
Nora M Chapman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3889448/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Persistent Enterovirus Infection: Little Deletions, Long Infections. Vaccines, 2022, 10, 770.	2.1	7
2	Immunoglobulin free light chains as an inflammatory biomarker of heart failure with myocarditis. Clinical Immunology, 2020, 217, 108455.	1.4	11
3	Complete Genome Sequence of the Naegleria fowleri (Strain LEE) Closed Circular Extrachromosomal Ribosomal DNA Element. Microbiology Resource Announcements, 2020, 9, .	0.3	4
4	Mucin-1 is required for Coxsackie Virus B3-induced inflammation in pancreatitis. Scientific Reports, 2019, 9, 10656.	1.6	2
5	Mapping the Single Origin of Replication in the Naegleria gruberi Extrachromosomal DNA Element. Protist, 2019, 170, 141-152.	0.6	6
6	Enterovirus Persistence in Cardiac Cells of Patients With Idiopathic Dilated Cardiomyopathy Is Linked to 5' Terminal Genomic RNA-Deleted Viral Populations With Viral-Encoded Proteinase Activities. Circulation, 2019, 139, 2326-2338.	1.6	39
7	Complete Genome Sequence of the Circular Extrachromosomal Element of <i>Naegleria gruberi</i> Strain EGB Ribosomal DNA. Genome Announcements, 2018, 6, .	0.8	8
8	Prior immune exposure can protect or can enhance pathology in the enteroviruses: what predicts the outcome?. Virulence, 2017, 8, 643-645.	1.8	4
9	Reversion to wildtype of a mutated and nonfunctional coxsackievirus B3CRE(2C). Virus Research, 2016, 220, 136-149.	1.1	5
10	Domain I of the 5′ non-translated genomic region in coxsackievirus B3 RNA is not required for productive replication. Virology, 2016, 496, 127-130.	1.1	7
11	Three capsid amino acids notably influence coxsackie B3 virus stability. Journal of General Virology, 2016, 97, 60-68.	1.3	6
12	Coxsackievirus can persist in murine pancreas by deletion of 5′ terminal genomic sequences. Journal of Medical Virology, 2015, 87, 240-247.	2.5	54
13	Sequence specificity for uridylylation of the viral peptide linked to the genome (VPg) of enteroviruses. Virology, 2015, 484, 80-85.	1.1	17
14	Mutational Disruption of cis -Acting Replication Element 2C in Coxsackievirus B3 Leads to 5′-Terminal Genomic Deletions. Journal of Virology, 2015, 89, 11761-11772.	1.5	18
15	Evaluation of the fidelity of immunolabelling obtained with clone 5D8/1, a monoclonal antibody directed against the enteroviral capsid protein, VP1, in human pancreas. Diabetologia, 2014, 57, 392-401.	2.9	35
16	Detection of enterovirus in the islet cells of patients with type 1 diabetes: what do we learn from immunohistochemistry? Reply to Hansson SF, Korsgren S, Pontén F et al [letter]. Diabetologia, 2014, 57, 647-649.	2.9	12
17	The diagnosis of insulitis in human type 1 diabetes. Diabetologia, 2013, 56, 2541-2543.	2.9	159

18 Enteroviruses in the Mouse Model of Type 1 Diabetes. , 2013, , 49-56.

0

Nora M Chapman

#	Article	IF	CITATIONS
19	The microbiology of human hygiene and its impact on type 1 diabetes. Islets, 2012, 4, 253-261.	0.9	24
20	Coxsackievirus B3 infection leads to the generation of cardiac myosin heavy chain-α-reactive CD4 T cells in A/J mice. Clinical Immunology, 2012, 144, 237-249.	1.4	68
21	Detection of cardiac myosin heavy chain-α-specific CD4 cells by using MHC class II/IAk tetramers in A/J mice. Journal of Immunological Methods, 2011, 372, 107-118.	0.6	19
22	Enteroviruses and type 1 diabetes. Diabetes/Metabolism Research and Reviews, 2011, 27, 820-823.	1.7	32
23	Variations of Coxsackievirus B3 Capsid Primary Structure, Ligands, and Stability Are Selected for in a Coxsackievirus and Adenovirus Receptor-Limited Environment. Journal of Virology, 2011, 85, 3306-3314.	1.5	26
24	Enterovirus‡. , 2011, , 1293-1300.		0
25	Overview of theFlaviviridaeWith an Emphasis on the Japanese Encephalitis Group Viruses. Laboratory Medicine, 2009, 40, 493-499.	0.8	18
26	Functional role of the 5′ terminal cloverleaf in Coxsackievirus RNA replication. Virology, 2009, 393, 238-249.	1.1	34
27	5′ terminal deletions in the genome of a coxsackievirus B2 strain occurred naturally in human heart. Virology, 2008, 375, 480-491.	1.1	83
28	Persistent Coxsackievirus Infection: Enterovirus Persistence in Chronic Myocarditis and Dilated Cardiomyopathy. , 2008, 323, 275-292.		132
29	Replication of Coxsackievirus B3 in Primary Cell Cultures Generates Novel Viral Genome Deletions. Journal of Virology, 2008, 82, 2033-2037.	1.5	43
30	Endogenous low-level expression of the coxsackievirus and adenovirus receptor enables coxsackievirus B3 infection of RD cells. Journal of General Virology, 2007, 88, 3031-3038.	1.3	12
31	Myocarditis and Heart Failure Associated With Hepatitis C Virus Infection. Journal of Cardiac Failure, 2006, 12, 293-298.	0.7	102
32	Genetic determinants of virulence in the group B coxsackieviruses. Future Virology, 2006, 1, 597-604.	0.9	5
33	Group B Coxsackievirus Diabetogenic Phenotype Correlates with Replication Efficiency. Journal of Virology, 2006, 80, 5637-5643.	1.5	56
34	Characterization of an infectious cDNA copy of the genome of a naturally occurring, avirulent coxsackievirus B3 clinical isolate. Journal of General Virology, 2005, 86, 197-210.	1.3	38
35	5′-Terminal Deletions Occur in Coxsackievirus B3 during Replication in Murine Hearts and Cardiac Myocyte Cultures and Correlate with Encapsidation of Negative-Strand Viral RNA. Journal of Virology, 2005, 79, 7024-7041.	1.5	129
36	Monoclonal Antibody against Mouse CAR following Genetic Immunization. Hybridoma, 2004, 23, 19-22.	0.6	4

NORA M CHAPMAN

#	Article	IF	CITATIONS
37	Caspase-3 activation and ERK phosphorylation during CVB3 infection of cells: influence of the coxsackievirus and adenovirus receptor and engineered variants. Virus Research, 2003, 92, 179-186.	1.1	37
38	The Stem Loop II within the 5′ Nontranslated Region of Clinical Coxsackievirus B3 Genomes Determines Cardiovirulence Phenotype in a Murine Model. Journal of Infectious Diseases, 2003, 187, 1552-1561.	1.9	62
39	Animal Model of Alcoholic Pancreatitis: Role of Viral Infections. Pancreas, 2003, 27, 301-304.	0.5	27
40	Toward Testing the Hypothesis that Group B Coxsackieviruses (CVB) Trigger Insulin-Dependent Diabetes: Inoculating Nonobese Diabetic Mice with CVB Markedly Lowers Diabetes Incidence. Journal of Virology, 2002, 76, 12097-12111.	1.5	143
41	Enterovirus. , 2002, , 755-764.		0
42	Coxsackievirus and Adenovirus Receptor (CAR) Binds Immunoglobulins. Biochemistry, 2001, 40, 14324-14329.	1.2	23
43	The group B coxsackieviruses and myocarditis. Reviews in Medical Virology, 2001, 11, 355-368.	3.9	151
44	Progress toward Vaccines against Viruses that Cause Heart Disease. Herz, 2000, 25, 286-290.	0.4	9
45	Mutations in a conserved enteroviral RNA oligonucleotide sequence affect positive strand viral RNA synthesis. Archives of Virology, 2000, 145, 2061-2086.	0.9	19
46	Expression of an Antigenic Adenovirus Epitope in a Group B Coxsackievirus. Journal of Virology, 2000, 74, 4570-4578.	1.5	34
47	Coxsackievirus Expression of the Murine Secretory Protein Interleukin-4 Induces Increased Synthesis of Immunoglobulin G1 in Mice. Journal of Virology, 2000, 74, 7952-7962.	1.5	34
48	A Group B Coxsackievirus/Poliovirus 5′ Nontranslated Region Chimera Can Act as an Attenuated Vaccine Strain in Mice. Journal of Virology, 2000, 74, 4047-4056.	1.5	51
49	Genomic Determinants of Cardiovirulence in Coxsackievirus B3 Clinical Isolates: Localization to the 5' Nontranslated Region. Journal of Virology, 2000, 74, 4787-4794.	1.5	94
50	Expression of the Coxsackievirus and Adenovirus Receptor in Cultured Human Umbilical Vein Endothelial Cells: Regulation in Response to Cell Density. Journal of Virology, 1999, 73, 7077-7079.	1.5	70
51	Purification of the Putative Coxsackievirus B Receptor from HeLa Cells. Biochemical and Biophysical Research Communications, 1997, 233, 325-328.	1.0	85
52	Generation of an infectious cDNA of a highly cardiovirulent coxsackievirus B3(CVB3m) and comparison to other infectious CVB3 cDNAs. Virus Research, 1997, 50, 225-235.	1.1	25
53	Coxsackieviruses and diabetes. BioEssays, 1997, 19, 793-800.	1.2	41
54	Sites other than nucleotide 234 determine cardiovirulence in natural isolates of coxsackievirus B3. , 1997, 52, 258-261.		23

NORA M CHAPMAN

#	Article	IF	CITATIONS
55	Genomic regions of coxsackievirus B3 associated with cardiovirulence. , 1997, 52, 341-347.		24
56	Genetics of coxsackievirus B cardiovirulence and inflammatory heart muscle disease. Trends in Microbiology, 1996, 4, 175-179.	3.5	37
57	An infectious cDNA copy of the genome of a non-cardiovirulent coxsackievirus B3 strain: its complete sequence analysis and comparison to the genomes of cardiovirulent coxsackieviruses. Archives of Virology, 1994, 135, 115-130.	0.9	116
58	Comoviruses and enteroviruses share a T cell epitope. Virology, 1992, 186, 238-246.	1.1	10
59	Coxsackievirus B3 from an infectious cDNA copy of the genome is cardiovirulent in mice. Archives of Virology, 1992, 122, 399-409.	0.9	74
60	Detection of Human Enteroviruses Using the Polymerase Chain Reaction. Frontiers of Virology, 1992, , 331-344.	0.6	2
61	Molecular biology and pathogenesis of coxsackie B viruses. Reviews in Medical Virology, 1991, 1, 145-154.	3.9	23
62	Molecular approaches to enteroviral diagnosis in idiopathic cardiomyopathy and myocarditis. Journal of the American College of Cardiology, 1990, 15, 1688-1694.	1.2	123
63	Envelope glycoprotein of HIV induces interference and cytolysis resistance in CD4+ cells: Mechanism for persistence in AIDS. Cell, 1988, 53, 483-496.	13.5	264
64	Molecular cloning and partial characterization of the coxsackievirus B3 genome. Archives of Virology, 1985, 85, 157-163.	0.9	34
65	Coxsackievirus B3: Primary structure of the $5a$ € ² non-coding and capsid protein-coding regions of the genome. Virus Research, 1985, 3, 263-270.	1.1	70
66	Mechanism of ribosomal subunit association: Discrimination of specific sites in 16 S RNA essential for association activity. Journal of Molecular Biology, 1979, 130, 433-449.	2.0	151
67	Protection of specific sites in 16 S RNA from chemical modification by association of 30 S and 50 S ribosomes. Journal of Molecular Biology, 1977, 109, 131-149.	2.0	145
68	Immunology of the Coxsackieviruses. , 0, , 391-403.		2
69	Group B Coxsackievirus Diseases. , 0, , 353-368.		1
70	The Primary Viruses of Myocarditis. , 0, , 023-053.		1
71	Group B Coxsackievirus Diseases. , 0, , 353-368.		0
72	Host Immune Responses to Enterovirus Infections. , 0, , 175-191.		1