
Kenji Hata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3889302/publications.pdf Version: 2024-02-01

Κενιι Ηλτ

#	Article	IF	CITATIONS
1	Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nature Materials, 2006, 5, 987-994.	13.3	1,811
2	Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nature Materials, 2009, 8, 494-499.	13.3	1,620
3	A Rubberlike Stretchable Active Matrix Using Elastic Conductors. Science, 2008, 321, 1468-1472.	6.0	1,265
4	A black body absorber from vertically aligned single-walled carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6044-6047.	3.3	647
5	Extracting the Full Potential of Singleâ€Walled Carbon Nanotubes as Durable Supercapacitor Electrodes Operable at 4 V with High Power and Energy Density. Advanced Materials, 2010, 22, E235-41.	11.1	582
6	Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts. Nature Nanotechnology, 2006, 1, 131-136.	15.6	342
7	Kinetics of Water-Assisted Single-Walled Carbon Nanotube Synthesis Revealed by a Time-Evolution Analysis. Physical Review Letters, 2005, 95, 056104.	2.9	309
8	Integrated three-dimensional microelectromechanical devices from processable carbon nanotube wafers. Nature Nanotechnology, 2008, 3, 289-294.	15.6	266
9	84% Catalyst Activity of Water-Assisted Growth of Single Walled Carbon Nanotube Forest Characterization by a Statistical and Macroscopic Approach. Journal of Physical Chemistry B, 2006, 110, 8035-8038.	1.2	235
10	Highly Conductive Sheets from Millimeterâ€Long Singleâ€Walled Carbon Nanotubes and Ionic Liquids: Application to Fastâ€Moving, Lowâ€Voltage Electromechanical Actuators Operable in Air. Advanced Materials, 2009, 21, 1582-1585.	11.1	230
11	Nanocomposite Ion Gels Based on Silica Nanoparticles and an Ionic Liquid: Ionic Transport, Viscoelastic Properties, and Microstructure. Journal of Physical Chemistry B, 2008, 112, 9013-9019.	1.2	200
12	Revealing the Secret of Water-Assisted Carbon Nanotube Synthesis by Microscopic Observation of the Interaction of Water on the Catalysts. Nano Letters, 2008, 8, 4288-4292.	4.5	195
13	Synthesis of Single- and Double-Walled Carbon Nanotube Forests on Conducting Metal Foils. Journal of the American Chemical Society, 2006, 128, 13338-13339.	6.6	179
14	Compact and Light Supercapacitor Electrodes from a Surfaceâ€Only Solid by Opened Carbon Nanotubes with 2 200 m ² g ^{â^'1} Surface Area. Advanced Functional Materials, 2010, 20, 422-428.	7.8	145
15	Exploring Advantages of Diverse Carbon Nanotube Forests with Tailored Structures Synthesized by Supergrowth from Engineered Catalysts. ACS Nano, 2009, 3, 108-114.	7.3	144
16	Improved and Large Area Single-Walled Carbon Nanotube Forest Growth by Controlling the Gas Flow Direction. ACS Nano, 2009, 3, 4164-4170.	7.3	130
17	Dispersion and Separation of Small-Diameter Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2006, 128, 12239-12242.	6.6	118
18	Electrochemical doping of pure single-walled carbon nanotubes used as supercapacitor electrodes. Carbon, 2008, 46, 1999-2001.	5.4	108

Κενji Ηατα

#	Article	IF	CITATIONS
19	Atomic-Resolution Imaging of the Nucleation Points of Single-Walled Carbon Nanotubes. Small, 2005, 1, 1180-1183.	5.2	93
20	General Rules Governing the Highly Efficient Growth of Carbon Nanotubes. Advanced Materials, 2009, 21, 4811-4815.	11.1	91
21	Existence and Kinetics of Graphitic Carbonaceous Impurities in Carbon Nanotube Forests to Assess the Absolute Purity. Nano Letters, 2009, 9, 769-773.	4.5	70
22	Thermal Diffusivity of Single-Walled Carbon Nanotube Forest Measured by Laser Flash Method. Japanese Journal of Applied Physics, 2009, 48, 05EC07.	0.8	59
23	Interplay of wall number and diameter on the electrical conductivity of carbon nanotube thin films. Carbon, 2014, 67, 318-325.	5.4	56
24	Excitons and exciton-phonon coupling in metallic single-walled carbon nanotubes: Resonance Raman spectroscopy. Physical Review B, 2008, 78, .	1.1	52
25	Water-Assisted Highly Efficient Synthesis of Single-Walled Carbon Nanotubes Forests from Colloidal Nanoparticle Catalysts. Journal of Physical Chemistry C, 2007, 111, 17961-17965.	1.5	47
26	Diagnostics and growth control of single-walled carbon nanotube forests using a telecentric optical system for in situ height monitoring. Applied Physics Letters, 2008, 93, 143115.	1.5	39
27	Hole Opening of Carbon Nanotubes and Their Capacitor Performance. Energy & Fuels, 2010, 24, 3373-3377.	2.5	39
28	Classification of Commercialized Carbon Nanotubes into Three General Categories as a Guide for Applications. ACS Applied Nano Materials, 2019, 2, 4043-4047.	2.4	39
29	Dual Porosity Single-Walled Carbon Nanotube Material. Nano Letters, 2009, 9, 3302-3307.	4.5	38
30	Observations of bound Tween80 surfactant molecules on single-walled carbon nanotubes in an aqueous solution. Carbon, 2009, 47, 3434-3440.	5.4	36
31	A Background Level of Oxygen-Containing Aromatics for Synthetic Control of Carbon Nanotube Structure. Journal of the American Chemical Society, 2009, 131, 15992-15993.	6.6	35
32	Efficient dispersing and shortening of super-growth carbon nanotubes by ultrasonic treatment with ceramic balls and surfactants. Advanced Powder Technology, 2010, 21, 551-555.	2.0	32
33	Nanoscale Curvature Effect on Ordering of N ₂ Molecules Adsorbed on Single Wall Carbon Nanotube. Journal of Physical Chemistry C, 2007, 111, 15660-15663.	1.5	26
34	Integration of SWNT film into MEMS for a micro-thermoelectric device. Smart Materials and Structures, 2010, 19, 075003.	1.8	25
35	Mechanical Properties of Beams from Self-Assembled Closely Packed and Aligned Single-Walled Carbon Nanotubes. Physical Review Letters, 2009, 102, 175505.	2.9	23
36	Outer-specific surface area as a gauge for absolute purity of single-walled carbon nanotube forests. Carbon, 2010, 48, 4542-4546.	5.4	21

Κενji Ηατα

#	Article	IF	CITATIONS
37	Selective D ₂ adsorption enhanced by the quantum sieving effect on entangled single-wall carbon nanotubes. Journal of Physics Condensed Matter, 2010, 22, 334207.	0.7	21
38	Virtual experimentations by deep learning on tangible materials. Communications Materials, 2021, 2, .	2.9	16
39	Intrinsic Magnetoresistance of Single-Walled Carbon Nanotubes Probed by a Noncontact Method. Physical Review Letters, 2010, 104, 016803.	2.9	13
40	From highly efficient impurity-free CNT synthesis to DWNT forests, CNT solids, and super-capacitors. , 2007, , .		2
41	Dispersion and Separation of Small-Diameter Single-Walled Carbon Nanotubes [J. Am. Chem.Soc.2006,128, 12239â~'12242] Journal of the American Chemical Society, 2006, 128, 15547-15547.	6.6	0