Huan-Ming Xiong

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3888987/huan-ming-xiong-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

51	5,629	33	55
papers	citations	h-index	g-index
55	6,642 ext. citations	9.3	6.39
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
51	Mulberry Leaves Derived Red Emissive Carbon Dots for Feeding Silkworms to Produce Brightly Fluorescent Silk <i>Advanced Materials</i> , 2022 , e2200152	24	9
50	Self-assembled ZnO-carbon dots anode materials for high performance nickel-zinc alkaline batteries. <i>Chemical Engineering Journal</i> , 2021 , 425, 130660	14.7	7
49	Red Fluorescent Carbon Dot Powder for Accurate Latent Fingerprint Identification using an Artificial Intelligence Program. <i>ACS Applied Materials & Distriction of Communication and Program and Progr</i>	9.5	10
48	Surface states of carbon dots and their influences on luminescence. <i>Journal of Applied Physics</i> , 2020 , 127, 231101	2.5	63
47	Carbon dots with red/near-infrared emissions and their intrinsic merits for biomedical applications. <i>Carbon</i> , 2020 , 167, 322-344	10.4	84
46	Integrating Carbon Dots with Porous Hydrogels to Produce Full Carbon Electrodes for Electric Double-Layer Capacitors. <i>ACS Applied Energy Materials</i> , 2020 , 3, 6907-6914	6.1	11
45	A new generation of energy storage electrode materials constructed from carbon dots. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 729-749	7.8	34
44	Applications of Carbon Dots in Next-generation Lithium-Ion Batteries. <i>ChemNanoMat</i> , 2020 , 6, 1421-14	36 .5	11
43	Efficient Oxygen Electrocatalyst for Zn-Air Batteries: Carbon Dots and CoS Nanoparticles in a N,S-Codoped Carbon Matrix. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2019 , 11, 14085-14094	9.5	66
42	Heteroatom-doped carbon dots based catalysts for oxygen reduction reactions. <i>Journal of Colloid and Interface Science</i> , 2019 , 537, 716-724	9.3	42
41	Robust Negative Electrode Materials Derived from Carbon Dots and Porous Hydrogels for High-Performance Hybrid Supercapacitors. <i>Advanced Materials</i> , 2019 , 31, e1806197	24	64
40	Preparation of porous carbon electrodes from semen cassiae for high-performance electric double-layer capacitors. <i>New Journal of Chemistry</i> , 2018 , 42, 6763-6769	3.6	21
39	Solvent-Controlled Synthesis of Highly Luminescent Carbon Dots with a Wide Color Gamut and Narrowed Emission Peak Widths. <i>Small</i> , 2018 , 14, e1800612	11	281
38	Facile synthesis of red-emitting carbon dots from pulp-free lemon juice for bioimaging. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 5272-5277	7.3	138
37	Red-Emissive Carbon Dots for Fingerprints Detection by Spray Method: Coffee Ring Effect and Unquenched Fluorescence in Drying Process. <i>ACS Applied Materials & Detection Materi</i>	433	194
36	Self-Assembled ZnO Nanoparticle Capsules for Carrying and Delivering Isotretinoin to Cancer Cells. <i>ACS Applied Materials & Delivering Isotretinoin to Cancer Cells.</i>	9.5	25
35	Highly Efficient Red-Emitting Carbon Dots with Gram-Scale Yield for Bioimaging. <i>Langmuir</i> , 2017 , 33, 12635-12642	4	147

(2012-2017)

34	High volumetric supercapacitor with a long life span based on polymer dots and graphene sheets. Journal of Power Sources, 2017 , 364, 465-472	8.9	20
33	Full-Color Light-Emitting Carbon Dots with a Surface-State-Controlled Luminescence Mechanism. <i>ACS Nano</i> , 2016 , 10, 484-91	16.7	1381
32	ZnO-Based Nanoplatforms for Labeling and Treatment of Mouse Tumors without Detectable Toxic Side Effects. <i>ACS Nano</i> , 2016 , 10, 4294-300	16.7	76
31	Carbon Dots/NiCo O Nanocomposites with Various Morphologies for High Performance Supercapacitors. <i>Small</i> , 2016 , 12, 5927-5934	11	150
30	Hierarchical porous carbon materials with high capacitance derived from Schiff-base networks. <i>ACS Applied Materials & Design Company </i>	9.5	93
29	Exploring the blue luminescence origin of nitrogen-doped carbon dots by controlling the water amount in synthesis. <i>RSC Advances</i> , 2015 , 5, 66528-66533	3.7	42
28	Folic acid functionalized ZnO quantum dots for targeted cancer cell imaging. <i>Nanotechnology</i> , 2015 , 26, 305702	3.4	25
27	Photoluminescent ZnO Nanoparticles and Their Biological Applications. <i>Materials</i> , 2015 , 8, 3101-3127	3.5	117
26	Nitrogen and sulfur co-doped carbon dots with strong blue luminescence. <i>Nanoscale</i> , 2014 , 6, 13817-23	3 7.7	392
25	In situ tracking the intracellular delivery of antisense oligonucleotides by fluorescein doped silica nanoparticles. <i>Talanta</i> , 2014 , 127, 43-50	6.2	6
24	Nitrogen-doped carbon dots derived from polyvinyl pyrrolidone and their multicolor cell imaging. <i>Nanotechnology</i> , 2014 , 25, 205604	3.4	60
23	Stable photoluminescent ZnO@Cd(OH)2 core-shell nanoparticles synthesized via ultrasonication-assisted sol-gel method. <i>Journal of Colloid and Interface Science</i> , 2013 , 393, 80-6	9.3	14
22	Luminescent carbon quantum dots and their application in cell imaging. <i>New Journal of Chemistry</i> , 2013 , 37, 2515	3.6	117
21	ZnO nanoparticles applied to bioimaging and drug delivery. <i>Advanced Materials</i> , 2013 , 25, 5329-35	24	337
20	Biodegradable ZnO@polymer core-shell nanocarriers: pH-triggered release of doxorubicin in vitro. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 4127-31	16.4	118
19	Biodegradable ZnO@polymer CoreBhell Nanocarriers: pH-Triggered Release of Doxorubicin In Vitro. <i>Angewandte Chemie</i> , 2013 , 125, 4221-4225	3.6	12
18	Biological Applications of ZnO Nanoparticles. Current Molecular Imaging, 2013, 2, 177-192		13
17	ZnO@silica coreBhell nanoparticles with remarkable luminescence and stability in cell imaging. Journal of Materials Chemistry, 2012 , 22, 13159		82

16	Photoluminescent ZnO nanoparticles synthesized at the interface between air and triethylene glycol. <i>Journal of Materials Chemistry</i> , 2011 , 21, 3178		44
15	The application of ZnO luminescent nanoparticles in labeling mice. <i>Contrast Media and Molecular Imaging</i> , 2011 , 6, 328-30	3.2	16
14	Photoluminescent ZnO nanoparticles modified by polymers. <i>Journal of Materials Chemistry</i> , 2010 , 20, 4251		134
13	SnO2@Poly(HEMA-co-St-co-VPBA) core-shell nanoparticles designed for selectively enriching glycopeptides followed by MALDI-MS analysis. <i>Chemistry - an Asian Journal</i> , 2010 , 5, 1185-91	4.5	23
12	Sonochemical Synthesis of Highly Luminescent Zinc Oxide Nanoparticles Doped with Magnesium(II). <i>Angewandte Chemie</i> , 2009 , 121, 2765-2769	3.6	34
11	Sonochemical synthesis of highly luminescent zinc oxide nanoparticles doped with magnesium(II). <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 2727-31	16.4	185
10	LiMn2O4 Nanorods, Nanothorn Microspheres, and Hollow Nanospheres as Enhanced Cathode Materials of Lithium Ion Battery. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 12051-12057	3.8	111
9	Stable aqueous ZnO@polymer core-shell nanoparticles with tunable photoluminescence and their application in cell imaging. <i>Journal of the American Chemical Society</i> , 2008 , 130, 7522-3	16.4	308
8	Surfactant-free synthesis of SnO2@PMMA and TiO2@PMMA core-shell nanobeads designed for peptide/protein enrichment and MALDI-TOF MS analysis. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 4204-7	16.4	45
7	Surfactant-Free Synthesis of SnO2@PMMA and TiO2@PMMA CoreBhell Nanobeads Designed for Peptide/Protein Enrichment and MALDI-TOF MS Analysis. <i>Angewandte Chemie</i> , 2008 , 120, 4272-4275	3.6	10
6	Water-stable blue-emitting ZnO@polymer core⊞hell microspheres. <i>Journal of Materials Chemistry</i> , 2007 , 17, 2490-2496		62
5	Stable polymer electrolytes based on polyether-grafted ZnO nanoparticles for all-solid-state lithium batteries. <i>Journal of Materials Chemistry</i> , 2006 , 16, 1345		51
4	Liquid Polymer Nanocomposites PEGMEBnO2 and PEGMEBiO2 Prepared through Solvothermal Methods. <i>Chemistry of Materials</i> , 2006 , 18, 3850-3854	9.6	20
3	Polyether-Grafted ZnO Nanoparticles with Tunable and Stable Photoluminescence at Room Temperature. <i>Chemistry of Materials</i> , 2005 , 17, 3062-3064	9.6	118
2	New PolymerIhorganic Nanocomposites: PEOIInO and PEOIInOIIiClO4 Films. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 10169-10174	3.4	194
1	Large scale synthesis of full-color emissive carbon dots from a single carbon source by a solvent-free method. <i>Nano Research</i> ,1	10	8