
Roberto Pérez-Torrado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3888873/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Indirect Methods To Measure Unfolded Proteins In Living Cells Using Fluorescent. Methods in Molecular Biology, 2022, 2378, 31-44.	0.9	2
2	Functional divergence in the proteins encoded by <i>ARO80</i> from <i>S. uvarum</i> , <i>S. kudriavzevii</i> and <i>S. cerevisiae</i> explain differences in the aroma production during wine fermentation. Microbial Biotechnology, 2022, 15, 2281-2291.	4.2	6
3	Editorial: New Advances in Genetic Studies to Understand Yeast Adaptation to Extreme and Fermentative Environments. Frontiers in Genetics, 2021, 12, 663641.	2.3	1
4	Metabolic differences between a wild and a wine strain of <scp><i>Saccharomyces cerevisiae</i></scp> during fermentation unveiled by multiâ€omic analysis. Environmental Microbiology, 2021, 23, 3059-3076.	3.8	7
5	Virulence related traits in yeast species associated with food; Debaryomyces hansenii, Kluyveromyces marxianus, and Wickerhamomyces anomalus. Food Control, 2021, 124, 107901.	5.5	9
6	A Multiphase Multiobjective Dynamic Genome-Scale Model Shows Different Redox Balancing among Yeast Species of the <i>Saccharomyces</i> Genus in Fermentation. MSystems, 2021, 6, e0026021.	3.8	20
7	Convergent adaptation of Saccharomyces uvarum to sulfite, an antimicrobial preservative widely used in human-driven fermentations. PLoS Genetics, 2021, 17, e1009872.	3.5	11
8	A time course metabolism comparison among Saccharomyces cerevisiae, S. uvarum and S. kudriavzevii species in wine fermentation. Food Microbiology, 2020, 90, 103484.	4.2	36
9	Metabolome segregation of four strains of <scp><i>Saccharomyces cerevisiae</i></scp> , <i>Saccharomyces uvarum</i> and <i>Saccharomyces kudriavzevii</i> conducted under low temperature oenological conditions. Environmental Microbiology, 2020, 22, 3700-3721.	3.8	11
10	Dominance of wine <i>Saccharomyces cerevisiae</i> strains over <i>S. kudriavzevii</i> in industrial fermentation competitions is related to an acceleration of nutrient uptake and utilization. Environmental Microbiology, 2019, 21, 1627-1644.	3.8	50
11	Aroma production and fermentation performance of S. cerevisiaeâ€ [−] ×â€ [−] S. kudriavzevii natural hybrids under cold oenological conditions. International Journal of Food Microbiology, 2019, 297, 51-59.	4.7	8
12	Aneuploidy and Ethanol Tolerance in Saccharomyces cerevisiae. Frontiers in Genetics, 2019, 10, 82.	2.3	71
13	Stl1 transporter mediating the uptake of glycerol is not a weak point of <i>Saccharomyces kudriavzevii's</i> low osmotolerance. Letters in Applied Microbiology, 2019, 68, 81-86.	2.2	3
14	Membrane fluidification by ethanol stress activates unfolded protein response in yeasts. Microbial Biotechnology, 2018, 11, 465-475.	4.2	33
15	A comparison of the performance of natural hybrids Saccharomyces cerevisiae  ×  Saccharomyces kudriavzevii at low temperatures reveals the crucial role of their S. kudriavzevii genomic contribution. International Journal of Food Microbiology, 2018, 274, 12-19.	4.7	9
16	Alternative yeasts for winemaking: <i>Saccharomyces</i> non- <i>cerevisiae</i> and its hybrids. Critical Reviews in Food Science and Nutrition, 2018, 58, 1780-1790.	10.3	65
17	On the origins and industrial applications of <scp><i>Saccharomyces cerevisiae</i></scp> × <i>Saccharomyces kudriavzevii</i> hybrids. Yeast, 2018, 35, 51-69.	1.7	75
18	New Trends in the Uses of Yeasts in Oenology. Advances in Food and Nutrition Research, 2018, 85, 177-210.	3.0	46

#	Article	IF	CITATIONS
19	Ecological interactions among Saccharomyces cerevisiae strains: insight into the dominance phenomenon. Scientific Reports, 2017, 7, 43603.	3.3	37
20	RNAseq-based transcriptome comparison of Saccharomyces cerevisiae strains isolated from diverse fermentative environments. International Journal of Food Microbiology, 2017, 257, 262-270.	4.7	11
21	Ethanol Effects Involve Non-canonical Unfolded Protein Response Activation in Yeast Cells. Frontiers in Microbiology, 2017, 8, 383.	3.5	18
22	Saccharomyces cerevisiae show low levels of traversal across human endothelial barrier in vitro. F1000Research, 2017, 6, 944.	1.6	6
23	Transcriptomic analysis of Saccharomyces cerevisiae x SaccharomycesÂkudriavzevii hybrids during low temperature winemaking. F1000Research, 2017, 6, 679.	1.6	13
24	Transcriptomic analysis of Saccharomyces cerevisiae x Saccharomyces kudriavzevii hybrids during low temperature winemaking. F1000Research, 2017, 6, 679.	1.6	5
25	Saccharomyces cerevisiae show low levels of traversal across the human blood brain barrier in vitro. F1000Research, 2017, 6, 944.	1.6	5
26	Ethanol Cellular Defense Induce Unfolded Protein Response in Yeast. Frontiers in Microbiology, 2016, 7, 189.	3.5	46
27	Alternative Glycerol Balance Strategies among Saccharomyces Species in Response to Winemaking Stress. Frontiers in Microbiology, 2016, 7, 435.	3.5	39
28	Differences in Enzymatic Properties of the Saccharomyces kudriavzevii and Saccharomyces uvarum Alcohol Acetyltransferases and Their Impact on Aroma-Active Compounds Production. Frontiers in Microbiology, 2016, 7, 897.	3.5	34
29	Increased mannoprotein content in wines produced by Saccharomyces kudriavzevii×Saccharomyces cerevisiae hybrids. International Journal of Food Microbiology, 2016, 237, 35-38.	4.7	9
30	Near-freezing effects on the proteome of industrial yeast strains of Saccharomyces cerevisiae. Journal of Biotechnology, 2016, 221, 70-77.	3.8	9
31	Characterisation of the broad substrate specificity 2-keto acid decarboxylase Aro10p of Saccharomyces kudriavzevii and its implication in aroma development. Microbial Cell Factories, 2016, 15, 51.	4.0	21
32	Redox engineering by ectopic expression of glutamate dehydrogenase genes links NADPH availability and NADH oxidation with cold growth in Saccharomyces cerevisiae. Microbial Cell Factories, 2015, 14, 100.	4.0	20
33	Comparative Genomic Analysis Reveals a Critical Role of De Novo Nucleotide Biosynthesis for Saccharomyces cerevisiae Virulence. PLoS ONE, 2015, 10, e0122382.	2.5	9
34	Molecular and enological characterization of a natural Saccharomyces uvarum and Saccharomyces cerevisiae hybrid. International Journal of Food Microbiology, 2015, 204, 101-110.	4.7	57
35	Genetic improvement of non-GMO wine yeasts: Strategies, advantages and safety. Trends in Food Science and Technology, 2015, 45, 1-11.	15.1	38
36	Enhanced fermentative capacity of yeasts engineered in storage carbohydrate metabolism. Biotechnology Progress, 2015, 31, 20-24.	2.6	10

#	Article	IF	CITATIONS
37	Saccharomyces kudriavzevii and Saccharomyces uvarum differ from Saccharomyces cerevisiae during the production of aroma-active higher alcohols and acetate esters using their amino acidic precursors. International Journal of Food Microbiology, 2015, 205, 41-46.	4.7	96
38	Yeast biomass, an optimised product with myriad applications in the food industry. Trends in Food Science and Technology, 2015, 46, 167-175.	15.1	48
39	Opportunistic Strains of Saccharomyces cerevisiae: A Potential Risk Sold in Food Products. Frontiers in Microbiology, 2015, 6, 1522.	3.5	64
40	Comparative genomic analysis of Saccharomyces cerevisiae yeasts isolated from fermentations of traditional beverages unveils different adaptive strategies. International Journal of Food Microbiology, 2014, 171, 129-135.	4.7	16
41	Transcriptomics of cryophilic Saccharomyces kudriavzevii reveals the key role of gene translation efficiency in cold stress adaptations. BMC Genomics, 2014, 15, 432.	2.8	50
42	Enhanced Enzymatic Activity of Glycerol-3-Phosphate Dehydrogenase from the Cryophilic Saccharomyces kudriavzevii. PLoS ONE, 2014, 9, e87290.	2.5	66
43	Trx2p-dependent Regulation of Saccharomyces cerevisiae Oxidative Stress Response by the Skn7p Transcription Factor under Respiring Conditions. PLoS ONE, 2013, 8, e85404.	2.5	3
44	Genome-wide gene expression of a natural hybrid between Saccharomyces cerevisiae and S. kudriavzevii under enological conditions. International Journal of Food Microbiology, 2012, 157, 340-345.	4.7	23
45	Transcriptomics in human blood incubation reveals the importance of oxidative stress response in Saccharomyces cerevisiae clinical strains. BMC Genomics, 2012, 13, 419.	2.8	15
46	Engineered Trx2p industrial yeast strain protects glycolysis and fermentation proteins from oxidative carbonylation during biomass propagation. Microbial Cell Factories, 2012, 11, 4.	4.0	14
47	Modification of the TRX2 gene dose in Saccharomyces cerevisiae affects hexokinase 2 gene regulation during wine yeast biomass production. Applied Microbiology and Biotechnology, 2012, 94, 773-787.	3.6	16
48	Clinical Saccharomyces cerevisiae isolates cannot cross the epithelial barrier in vitro. International Journal of Food Microbiology, 2012, 157, 59-64.	4.7	21
49	Clobal expression studies in baker's yeast reveal target genes for the improvement of industrially-relevant traits: the cases of CAF16 and ORC2. Microbial Cell Factories, 2010, 9, 56.	4.0	11
50	Reduction of oxidative cellular damage by overexpression of the thioredoxin TRX2 gene improves yield and quality of wine yeast dry active biomass. Microbial Cell Factories, 2010, 9, 9.	4.0	51
51	Modulation of the glycerol and ethanol syntheses in the yeast Saccharomyces kudriavzevii differs from that exhibited by Saccharomyces cerevisiae and their hybrid. Food Microbiology, 2010, 27, 628-637.	4.2	76
52	Transcriptomic and proteomic insights of the wine yeast biomass propagation process. FEMS Yeast Research, 2010, 10, 870-884.	2.3	24
53	Improving yield of industrial biomass propagation by increasing the Trx2p dosage. Bioengineered Bugs, 2010, 1, 352-353.	1.7	9
54	Chimeric Genomes of Natural Hybrids of <i>Saccharomyces cerevisiae</i> and <i>Saccharomyces kudriavzevii</i> . Applied and Environmental Microbiology, 2009, 75, 2534-2544.	3.1	83

#	Article	IF	CITATIONS
55	Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth. Applied Microbiology and Biotechnology, 2009, 81, 951-960.	3.6	39
56	The human protein kinase HIPK2 phosphorylates and downregulates the methyl-binding transcription factor ZBTB4. Oncogene, 2009, 28, 2535-2544.	5.9	39
57	Acid trehalase is involved in intracellular trehalose mobilization during postdiauxic growth and severe saline stress inSaccharomyces cerevisiae. FEMS Yeast Research, 2009, 9, 52-62.	2.3	22
58	Born to bind: the BTB protein–protein interaction domain. BioEssays, 2006, 28, 1194-1202.	2.5	223
59	The Human Enhancer Blocker CTC-binding Factor Interacts with the Transcription Factor Kaiso. Journal of Biological Chemistry, 2005, 280, 43017-43023.	3.4	76
60	Monitoring Stress-Related Genes during the Process of Biomass Propagation of Saccharomyces cerevisiae Strains Used for Wine Making. Applied and Environmental Microbiology, 2005, 71, 6831-6837.	3.1	60
61	Wine Yeast Strains Engineered for Glycogen Overproduction Display Enhanced Viability under Glucose Deprivation Conditions. Applied and Environmental Microbiology, 2002, 68, 3339-3344.	3.1	43
62	Study of the First Hours of Microvinification by the Use of Osmotic Stress-response Genes as Probes. Systematic and Applied Microbiology, 2002, 25, 153-161.	2.8	39
63	Recent Advances in Yeast Biomass Production. , 0, , .		19