
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3888789/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pathogenesis of Ebola Hemorrhagic Fever in Cynomolgus Macaques. American Journal of Pathology, 2003, 163, 2347-2370.	1.9	543
2	Interaction of NF-κB and NFAT with the Interferon-γ Promoter. Journal of Biological Chemistry, 1997, 272, 30412-30420.	1.6	392
3	Interleukin 2 plays a central role in Th2 differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3880-3885.	3.3	340
4	Mechanisms Underlying Coagulation Abnormalities in Ebola Hemorrhagic Fever: Overexpression of Tissue Factor in Primate Monocytes/Macrophages Is a Key Event. Journal of Infectious Diseases, 2003, 188, 1618-1629.	1.9	336
5	Differential microRNA regulation of HLA-C expression and its association with HIV control. Nature, 2011, 472, 495-498.	13.7	328
6	Role of interferon- \hat{I}^3 in immune cell regulation. Journal of Leukocyte Biology, 1995, 58, 373-381.	1.5	295
7	Pathogenesis of Ebola Hemorrhagic Fever in Primate Models. American Journal of Pathology, 2003, 163, 2371-2382.	1.9	292
8	Redirecting Migration of T Cells to Chemokine Secreted from Tumors by Genetic Modification with CXCR2. Human Gene Therapy, 2002, 13, 1971-1980.	1.4	261
9	Pathogen-specific loss of host resistance in mice lacking the IFN-gamma -inducible gene IGTP. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 751-755.	3.3	252
10	Proinflammatory response during Ebola virus infection of primate models: possible involvement of the tumor necrosis factor receptor superfamily. Immunology Letters, 2002, 80, 169-179.	1.1	232
11	Interferons: Success in anti-viral immunotherapy. Cytokine and Growth Factor Reviews, 2014, 25, 369-376.	3.2	222
12	NK Cell-Derived IFN-Î ³ Differentially Regulates Innate Resistance and Neutrophil Response in T Cell-Deficient Hosts Infected with <i>Mycobacterium tuberculosis</i> . Journal of Immunology, 2006, 177, 7086-7093.	0.4	197
13	In vivo administration of IL-18 can induce IgE production through Th2 cytokine induction and up-regulation of CD40 ligand (CD154) expression on CD4+ T cells. European Journal of Immunology, 2000, 30, 1998-2006.	1.6	166
14	Role of Proinflammatory Cytokines IL-18 and IL-1Î ² in Bleomycin-Induced Lung Injury in Humans and Mice. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 661-670.	1.4	153
15	Infection with Human Immunodeficiency Virus Type 1 Upregulates DNA Methyltransferase, Resulting in De Novo Methylation of the Gamma Interferon (IFN-γ) Promoter and Subsequent Downregulation of IFN-γ Production. Molecular and Cellular Biology, 1998, 18, 5166-5177.	1.1	148
16	Virally stimulated plasmacytoid dendritic cells produce chemokines and induce migration of T and NK cells. Journal of Leukocyte Biology, 2004, 75, 504-514.	1.5	146
17	Redox-active Protein Thioredoxin Prevents Proinflammatory Cytokine- or Bleomycin-induced Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2003, 168, 1075-1083.	2.5	145
18	Regulation of Interferon-Î ³ Gene Expression. Journal of Interferon and Cytokine Research, 1996, 16, 563-568.	0.5	138

#	Article	IF	CITATIONS
19	The chemotherapeutic agent DMXAA potently and specifically activates the TBK1–IRF-3 signaling axis. Journal of Experimental Medicine, 2007, 204, 1559-1569.	4.2	137
20	IFN-γ: A cytokine at the right time, is in the right place. Seminars in Immunology, 2019, 43, 101280.	2.7	134
21	Role of Natural Killer Cells in Innate Protection against Lethal Ebola Virus Infection. Journal of Experimental Medicine, 2004, 200, 169-179.	4.2	133
22	Cutting Edge: IL-18-Transgenic Mice: In Vivo Evidence of a Broad Role for IL-18 in Modulating Immune Function. Journal of Immunology, 2001, 166, 7014-7018.	0.4	124
23	Negative Transcriptional Regulation of the Interferon-γ Promoter by Glucocorticoids and Dominant Negative Mutants of c-Jun. Journal of Biological Chemistry, 1995, 270, 12548-12556.	1.6	113
24	The flavonoid baicalin inhibits superantigen-induced inflammatory cytokines and chemokines. FEBS Letters, 2001, 500, 52-55.	1.3	111
25	Pulmonary Inflammation and Emphysema. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 49-62.	2.5	105
26	Interferon-Î ³ : Producer cells, activation stimuli, and molecular genetic regulation. , 1990, 45, 137-151.		102
27	Dissociation of NKT Stimulation, Cytokine Induction, and NK Activation In Vivo by the Use of Distinct TCR-Binding Ceramides. Journal of Immunology, 2004, 172, 943-953.	0.4	99
28	Cellular and molecular mechanisms of IFN-γ production induced by IL-2 and IL-12 in a human NK cell line. Journal of Leukocyte Biology, 1995, 58, 225-233.	1.5	97
29	IFN-Î ³ causes aplastic anemia by altering hematopoietic stem/progenitor cell composition and disrupting lineage differentiation. Blood, 2014, 124, 3699-3708.	0.6	96
30	Differential Regulation of Chemokine Gene Expression by 15-Deoxy-Δ12,1412,14 Prostaglandin J2. Journal of Immunology, 2001, 166, 7104-7111.	0.4	95
31	PPAR and immune system—what do we know?. International Immunopharmacology, 2002, 2, 1029-1044.	1.7	95
32	IFN-gamma AU-rich element removal promotes chronic IFN-gamma expression and autoimmunity in mice. Journal of Autoimmunity, 2014, 53, 33-45.	3.0	95
33	Interferon-Î ² Therapy Prolongs Survival in Rhesus Macaque Models of Ebola and Marburg Hemorrhagic Fever. Journal of Infectious Diseases, 2013, 208, 310-318.	1.9	93
34	Translational repression of pre-formed cytokine-encoding mRNA prevents chronic activation of memory T cells. Nature Immunology, 2018, 19, 828-837.	7.0	90
35	Human B Cell Activation by Autologous NK Cells Is Regulated by CD40-CD40 Ligand Interaction: Role of Memory B Cells and CD5+B Cells. Journal of Immunology, 2001, 167, 6132-6139.	0.4	87
36	Interleukin 18 (IL-18) in synergy with IL-2 induces lethal lung injury in mice: a potential role for cytokines, chemokines, and natural killer cells in the pathogenesis of interstitial pneumonia. Blood, 2002, 99, 1289-1298.	0.6	87

#	Article	IF	CITATIONS
37	IFN-γ Polymorphisms (IFN-γ +2109 and IFN-γ +3810) Are Associated with Severe Hepatic Fibrosis in Human Hepatic Schistosomiasis (Schistosoma mansoni). Journal of Immunology, 2003, 171, 5596-5601.	0.4	83
38	The dynamic changes in cytokine responses in COVID-19: a snapshot of the current state of knowledge. Nature Immunology, 2020, 21, 1146-1151.	7.0	82
39	Post-transcriptional control of the interferon system. Biochimie, 2007, 89, 761-769.	1.3	80
40	The temporal program of peripheral blood gene expression in the response of nonhuman primates to Ebola hemorrhagic fever. Genome Biology, 2007, 8, R174.	13.9	80
41	Bone Marrow and Thymus Expression of Interferon-Î ³ Results in Severe B-Cell Lineage Reduction, T-Cell Lineage Alterations, and Hematopoietic Progenitor Deficiencies. Blood, 1997, 89, 583-595.	0.6	79
42	Human dendritic cells require multiple activation signals for the efficient generation of tumor antigen-specific T lymphocytes. European Journal of Immunology, 2000, 30, 3291-3298.	1.6	79
43	Polymorphisms of the human IFNG gene noncoding regions. Immunogenetics, 2000, 51, 50-58.	1.2	76
44	Regulation of Nuclear Gamma Interferon Gene Expression by Interleukin 12 (IL-12) and IL-2 Represents a Novel Form of Posttranscriptional Control. Molecular and Cellular Biology, 2002, 22, 1742-1753.	1.1	67
45	A Distal Region in the Interferon-Î ³ Gene Is a Site of Epigenetic Remodeling and Transcriptional Regulation by Interleukin-2. Journal of Biological Chemistry, 2004, 279, 41249-41257.	1.6	67
46	A single nucleotide polymorphism in the proximal IFN-gamma promoter alters control of gene transcription. Genes and Immunity, 2002, 3, 165-169.	2.2	66
47	IL-2 and IL-12 Alter NK Cell Responsiveness to IFN-Î ³ -Inducible Protein 10 by Down-Regulating CXCR3 Expression. Journal of Immunology, 2002, 168, 6090-6098.	0.4	65
48	Thioredoxin suppresses airway hyperresponsiveness and airway inflammation in asthma. Biochemical and Biophysical Research Communications, 2005, 334, 1141-1148.	1.0	63
49	A Novel Role of the Interferon-inducible Protein IFI16 as Inducer of Proinflammatory Molecules in Endothelial Cells. Journal of Biological Chemistry, 2007, 282, 33515-33529.	1.6	62
50	Expression of IFN-Î ³ Upon Triggering of Activating Ly49D NK Receptors In Vitro and In Vivo: Costimulation with IL-12 or IL-18 Overrides Inhibitory Receptors. Journal of Immunology, 2003, 170, 1763-1769.	0.4	57
51	Synergistic Effect of IL-2, IL-12, and IL-18 on Thymocyte Apoptosis and Th1/Th2 Cytokine Expression. Journal of Immunology, 2005, 174, 2796-2804.	0.4	57
52	Interleukin-15 Enhances Proteasomal Degradation of Bid in Normal Lymphocytes: Implications for Large Granular Lymphocyte Leukemias. Cancer Research, 2009, 69, 3986-3994.	0.4	57
53	Comparison of lymphokine secretion and mRNA expression in the CD45RA+ and CD45RO+ subsets of human peripheral blood CD4+ and CD8+ lymphocytes. European Journal of Immunology, 1995, 25, 644-648.	1.6	54
54	Architecture of high-affinity unnatural-base DNA aptamers toward pharmaceutical applications. Scientific Reports, 2016, 5, 18478.	1.6	52

#	Article	IF	CITATIONS
55	Characterization of cytokine differential induction of STAT complexes in primary human T and NK cells. Journal of Leukocyte Biology, 1998, 64, 245-258.	1.5	51
56	Regulation of ITAM-positive receptors: role of IL-12 and IL-18. Blood, 2006, 107, 1468-1475.	0.6	51
57	Immunomodulation of Natural Killer Cell Activity by Flavone Acetic Acid: Occurrence Via Induction of Interferon Â/beta. Journal of the National Cancer Institute, 1988, 80, 1226-1231.	3.0	49
58	Retinoic Acid-induced Transcriptional Modulation of the Human Interferon-Î ³ Promoter. Journal of Biological Chemistry, 1996, 271, 26783-26793.	1.6	49
59	Activating Ly-49 NK Receptors: Central Role in Cytokine and Chemokine Production. Journal of Immunology, 2001, 166, 4994-4999.	0.4	48
60	IL-4 synergistically enhances both IL-2– and IL-12–induced IFN-Î ³ expression in murine NK cells. Blood, 2003, 102, 207-214.	0.6	48
61	Regulation of IFN-Î ³ Expression. Advances in Experimental Medicine and Biology, 2016, 941, 1-19.	0.8	48
62	Activation of interleukin-13 expression in T cells from HTLV-1-infected individuals and in chronically infected cell lines. Blood, 2003, 102, 4130-4136.	0.6	47
63	The interplay of type I and type II interferons in murine autoimmune cholangitis as a basis for sexâ€biased autoimmunity. Hepatology, 2018, 67, 1408-1419.	3.6	45
64	Peroxisome proliferator-activated receptor-l ³ and its ligands attenuate biologic functions of human natural killer cells. Blood, 2004, 104, 3276-3284.	0.6	42
65	Interleukin-18 in Pulmonary Inflammatory Diseases. Journal of Interferon and Cytokine Research, 2012, 32, 443-449.	0.5	39
66	<scp>MCP</scp> â€1/ <scp>CCR</scp> 2 interactions direct migration of peripheral <scp>B</scp> and <scp>T</scp> lymphocytes to the thymus during acute infectious/inflammatory processes. European Journal of Immunology, 2012, 42, 2644-2654.	1.6	39
67	Critical role of post-transcriptional regulation for IFN-Î ³ in tumor-infiltrating T cells. Oncolmmunology, 2019, 8, e1532762.	2.1	37
68	Perforin-deficient CAR T cells recapitulate late-onset inflammatory toxicities observed in patients. Journal of Clinical Investigation, 2020, 130, 5425-5443.	3.9	37
69	Negative regulation of cytokine gene transcription 1. FASEB Journal, 1997, 11, 825-833.	0.2	36
70	Mouse Ly49 NK receptors: balancing activation and inhibition. Molecular Immunology, 2005, 42, 445-450.	1.0	35
71	Rapid and Rigorous IL-17A Production by a Distinct Subpopulation of Effector Memory T Lymphocytes Constitutes a Novel Mechanism of Toxic Shock Syndrome Immunopathology. Journal of Immunology, 2017, 198, 2805-2818.	0.4	35
72	Identification of a DNA binding site for the nuclear factor YY1 in the human GM-CSF core promoter. Nucleic Acids Research, 1994, 22, 5672-5678.	6.5	34

#	Article	IF	CITATIONS
73	Protein Kinase R-dependent Regulation of Interleukin-10 in Response to Double-stranded RNA. Journal of Biological Chemistry, 2008, 283, 25132-25139.	1.6	34
74	Enhancer Role of STAT5 in CD2 Activation of IFN-Î ³ Gene Expression. Journal of Immunology, 2004, 173, 6241-6247.	0.4	32
75	Molecular Regulation of Cytokine Gene Expression: Interferon-Î ³ as a Model System. Progress in Molecular Biology and Translational Science, 1997, 56, 109-127.	1.9	29
76	Reduced Expression of Nuclear Cyclic Adenosine 5′-Monophospate Response Element-Binding Proteins and IFN-γ Promoter Function in Disease Due to an Intracellular Pathogen. Journal of Immunology, 2002, 168, 3520-3526.	0.4	28
77	Aging Converts Innate B1a Cells into Potent CD8+ T Cell Inducers. Journal of Immunology, 2016, 196, 3385-3397.	0.4	27
78	Coexpression of IL-18 Strongly Attenuates IL-12-Induced Systemic Toxicity through a Rapid Induction of IL-10 without Affecting its Antitumor Capacity. Journal of Immunology, 2009, 183, 740-748.	0.4	26
79	TL1A: A mediator of gut inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8303-8304.	3.3	25
80	The Proinflammatory Cytokine Interleukin-18 Alters Multiple Signaling Pathways to Inhibit Natural Killer Cell Death. Journal of Interferon and Cytokine Research, 2006, 26, 706-718.	0.5	24
81	Interferon-Gamma Impairs Maintenance and Alters Hematopoietic Support of Bone Marrow Mesenchymal Stromal Cells. Stem Cells and Development, 2018, 27, 579-589.	1.1	24
82	Interleukin-10 Induces Uteroglobin-related Protein (UGRP) 1 Gene Expression in Lung Epithelial Cells through Homeodomain Transcription Factor T/EBP/NKX2.1. Journal of Biological Chemistry, 2004, 279, 54358-54368.	1.6	23
83	Cytokine Induction and Therapeutic Synergy with Interleukin-2 Against Murine Renal and Colon Cancers by Xanthenone-4-Acetic Acid Derivatives. Journal of Immunotherapy, 1992, 12, 247-255.	1.2	22
84	Mucosa-Specific Targets for Regulation of IFN-γ Expression: Lamina Propria T Cells Use Different <i>cis-</i> Elements than Peripheral Blood T Cells to Regulate Transactivation of IFN-γ Expression. Journal of Immunology, 2000, 164, 1399-1407.	0.4	22
85	Impaired NK Cell Development in an IFN-γ Transgenic Mouse: Aberrantly Expressed IFN-γ Enhances Hematopoietic Stem Cell Apoptosis and Affects NK Cell Differentiation. Journal of Immunology, 2002, 168, 1746-1752.	0.4	22
86	Unraveling the Pros and Cons of Interferon- \hat{I}^3 Gene Regulation. Immunity, 2006, 24, 506-507.	6.6	21
87	Thymic expression of IL-4 and IL-15 after systemic inflammatory or infectious Th1 disease processes induce the acquisition of "innate" characteristics during CD8+ T cell development. PLoS Pathogens, 2019, 15, e1007456.	2.1	21
88	Regulation of a Cell Type-specific Silencer in the Human Interleukin-3 Gene Promoter by the Transcription Factor YY1 and an AP2 Sequence-recognizing Factor. Journal of Biological Chemistry, 1999, 274, 26661-26667.	1.6	18
89	Aging of innate immunity: functional comparisons of NK/LAK cells obtained from bulk cultures of young and aged mouse spleen cells in high concentrations of interleukin-2. Experimental Gerontology, 2004, 39, 73-82.	1.2	18
90	Lentiviral Gene Transduction in Human and Mouse NK Cell Lines. Methods in Molecular Biology, 2010, 612, 209-221.	0.4	18

6

#	Article	IF	CITATIONS
91	Induction of STAT and NFκB activation by the antitumor agents 5,6-dimethylxanthenone-4-acetic acid and flavone acetic acid in a murine macrophage cell line. Biochemical Pharmacology, 1999, 58, 1173-1181.	2.0	17
92	CNS Interleukin-3 (IL-3) Expression and Neurological Syndrome in Antisense-IL-3 Transgenic Mice. Journal of Neuropathology and Experimental Neurology, 1999, 58, 480-488.	0.9	15
93	CD2 mediates activation of the IFN-Î ³ intronic STAT binding region in mucosal T cells. European Journal of Immunology, 2003, 33, 1152-1162.	1.6	14
94	Myeloid-Derived Suppressive Cell Expansion Promotes Melanoma Growth and Autoimmunity by Inhibiting CD40/IL27 Regulation in Macrophages. Cancer Research, 2021, 81, 5977-5990.	0.4	14
95	Synthesis and biological study of a flavone acetic acid analogue containing an azido reporting group designed as a multifunctional binding site probe. Bioorganic and Medicinal Chemistry, 2005, 13, 2717-2722.	1.4	12
96	IL-18 as critical co-stimulatory molecules in modulating the immune response of ITAM bearing lymphocytes. Seminars in Immunology, 2006, 18, 193-196.	2.7	12
97	Characterization of Interleukin 2 and Phorbol Myristate Acetate Augmentation of Expression of Transfected Human Interferon-Î ³ Genomic DNA. Journal of Interferon Research, 1988, 8, 527-538.	1.2	10
98	An IFNG SNP with an estrogen-like response element selectively enhances promoter expression in peripheral but not lamina propria T cells. Genes and Immunity, 2006, 7, 342-351.	2.2	10
99	Abrogation of TNFα Production during Cancer Immunotherapy Is Crucial for Suppressing Side Effects Due to the Systemic Expression of IL-12. PLoS ONE, 2014, 9, e90116.	1.1	10
100	Short Course in the Microbiome. Journal of Circulating Biomarkers, 2015, 4, 8.	0.8	9
101	Induction of Multiple Cytokine Gene Expression and IRF-1 mRNA by Flavone Acetic Acid in a Murine Macrophage Cell Line. Cellular Immunology, 1994, 157, 211-222.	1.4	8
102	Promise and complexity of lupus mouse models. Nature Immunology, 2021, 22, 683-686.	7.0	5
103	Report on the 2018 Cancer, Autoimmunity, and Immunology Conference. Journal of Immunology, 2019, 202, 2823-2828.	0.4	3
104	Modulation of lymphocyte function with inhibitory CD2: Loss of NK and NKT cells. Cellular Immunology, 2007, 249, 8-19.	1.4	2
105	Triptolide Attenuates Endotoxin- and Staphylococcal Exotoxin-Induced T-Cell Proliferation and Production of Cytokines and Chemokines. , 0, .		2
106	Safety levels of systemic IL-12 induced by cDNA expression as a cancer therapeutic. Immunotherapy, 2021, , .	1.0	2
107	Interferon-Î ³ : Gene and Protein Structure, Transcription Regulation, and Actions. , 2006, , 85-111.		1
108	Editorial: One small molecule: a new way to treat the flu?. Journal of Leukocyte Biology, 2011, 89, 327-328.	1.5	0

#	Article	IF	CITATIONS
109	Ion Gresser 1928–2019. Nature Immunology, 2019, 20, 775-775.	7.0	0
110	Posttranscriptional Regulation of IFNâ€gamma gene Expressionγγ. FASEB Journal, 2007, 21, A281.	0.2	0
111	Interferon-Gamma. , 2018, , 2680-2687.		0