James Guo Sheng Moo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3888779/publications.pdf Version: 2024-02-01

		361413	454955
30	1,551	20	30
papers	citations	h-index	g-index
32	32	32	2301
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Insights into the thermolytic transformation of lignocellulosic biomass waste to redox-active carbocatalyst: Durability of surface active sites. Applied Catalysis B: Environmental, 2018, 233, 120-129.	20.2	169
2	Helical 3Dâ€Printed Metal Electrodes as Customâ€Shaped 3D Platform for Electrochemical Devices. Advanced Functional Materials, 2016, 26, 698-703.	14.9	168
3	Chemical Energy Powered Nano/Micro/Macromotors and the Environment. Chemistry - A European Journal, 2015, 21, 58-72.	3.3	156
4	Processing of flexible plastic packaging waste into pyrolysis oil and multi-walled carbon nanotubes for electrocatalytic oxygen reduction. Journal of Hazardous Materials, 2020, 387, 121256.	12.4	103
5	Biomimetic Artificial Inorganic Enzymeâ€Free Selfâ€Propelled Microfish Robot for Selective Detection of Pb ²⁺ in Water. Chemistry - A European Journal, 2014, 20, 4292-4296.	3.3	99
6	From Nanomotors to Micromotors: The Influence of the Size of an Autonomous Bubble-Propelled Device upon Its Motion. ACS Nano, 2016, 10, 5041-5050.	14.6	97
7	Photochromic Spatiotemporal Control of Bubble-Propelled Micromotors by a Spiropyran Molecular Switch. ACS Nano, 2016, 10, 3543-3552.	14.6	73
8	Selfâ€Propelled Supercapacitors for Onâ€Demand Circuit Configuration Based on WS ₂ Nanoparticles Micromachines. Advanced Functional Materials, 2016, 26, 6662-6667.	14.9	70
9	Graphene Oxides Prepared by Hummers', Hofmann's, and Staudenmaier's Methods: Dramatic Influen on Heavyâ€Metalâ€Ion Adsorption. ChemPhysChem, 2014, 15, 2922-2929.	ces 2.1	68
10	Nano/Microrobots Meet Electrochemistry. Advanced Functional Materials, 2017, 27, 1604759.	14.9	67
11	Plastic derived carbon nanotubes for electrocatalytic oxygen reduction reaction: Effects of plastic feedstock and synthesis temperature. Electrochemistry Communications, 2019, 101, 11-18.	4.7	59
12	An XPS depth-profile study on electrochemically deposited TaO x. Journal of Solid State Electrochemistry, 2013, 17, 3115-3123.	2.5	54
13	Graphene Nanobubbles Produced by Water Splitting. Nano Letters, 2017, 17, 2833-2838.	9.1	43
14	Bjerknes Forces in Motion: Longâ€Range Translational Motion and Chiral Directionality Switching in Bubbleâ€Propelled Micromotors via an Ultrasonic Pathway. Advanced Functional Materials, 2018, 28, 1702618.	14.9	41
15	TaOx-capped Pt nanoparticles as active and durable electrocatalysts for oxygen reduction. Journal of Materials Chemistry A, 2013, 1, 14754.	10.3	39
16	Inherent Electrochemistry and Activation of Chemically Modified Graphenes for Electrochemical Applications. Chemistry - an Asian Journal, 2012, 7, 759-770.	3.3	37
17	Self-Propelled Micromotors Monitored by Particle-Electrode Impact Voltammetry. ACS Sensors, 2016, 1, 949-957.	7.8	36
18	Influence of pH on the Motion of Catalytic Janus Particles and Tubular Bubbleâ€Propelled Micromotors. Chemistry - A European Journal, 2016, 22, 355-360.	3.3	28

#	Article	IF	CITATIONS
19	Tissue cell assisted fabrication of tubular catalytic platinum microengines. Nanoscale, 2014, 6, 11359-11363.	5.6	27
20	Black-phosphorus-enhanced bubble-propelled autonomous catalytic microjets. Applied Materials Today, 2017, 9, 289-291.	4.3	20
21	Detecting the complex motion of self-propelled micromotors in microchannels by electrochemistry. RSC Advances, 2016, 6, 99977-99982.	3.6	18
22	Simultaneous self-exfoliation and autonomous motion of MoS ₂ particles in water. Chemical Communications, 2015, 51, 9899-9902.	4.1	13
23	Etched nanoholes in graphitic surfaces for enhanced electrochemistry of basal plane. Carbon, 2017, 123, 84-92.	10.3	13
24	Acetylene bubble-powered autonomous capsules: towards in situ fuel. Chemical Communications, 2014, 50, 15849-15851.	4.1	10
25	Electrochemical properties of carbon nanodiscs. RSC Advances, 2012, 2, 1565-1568.	3.6	9
26	Remote Electrochemical Monitoring of an Autonomous Self-Propelled Capsule. Journal of Physical Chemistry C, 2014, 118, 29896-29902.	3.1	9
27	Structure–Function Dependence on Template-Based Micromotors. ACS Applied Energy Materials, 2018, 1, 3443-3448.	5.1	8
28	Confined Bubbleâ€Propelled Microswimmers in Capillaries: Wall Effect, Fuel Deprivation, and Exhaust Product Excess. Small, 2020, 16, 2000413.	10.0	8
29	One-Pot Synthesis of Graphene-Sulfur Composites for Li-S Batteries: Influence of Sulfur Precursors. Journal of Carbon Research, 2018, 4, 2.	2.7	7
30	3D Printing: Helical 3D-Printed Metal Electrodes as Custom-Shaped 3D Platform for Electrochemical Devices (Adv. Funct. Mater. 5/2016). Advanced Functional Materials, 2016, 26, 803-803.	14.9	2