List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3888335/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	One Juliet and four Romeos: VeA and its methyltransferases. Frontiers in Microbiology, 2015, 6, 1.	1.5	1,444
3	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /O	verlock 10 4.3	Tf 50 662 T 1,430
4	Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature, 2005, 438, 1105-1115.	13.7	1,250
5	VelB/VeA/LaeA Complex Coordinates Light Signal with Fungal Development and Secondary Metabolism. Science, 2008, 320, 1504-1506.	6.0	843
6	Coordination of secondarymetabolism and development in fungi: the velvet familyof regulatory proteins. FEMS Microbiology Reviews, 2012, 36, 1-24.	3.9	477
7	Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biology, 2017, 18, 28.	3.8	417
8	Pre-fibrillar α-synuclein variants with impaired β-structure increase neurotoxicity in Parkinson's disease models. EMBO Journal, 2009, 28, 3256-3268.	3.5	411
9	Comparative genomics of citric-acid-producing <i>Aspergillus niger</i> ATCC 1015 versus enzyme-producing CBS 513.88. Genome Research, 2011, 21, 885-897.	2.4	329
10	Gene Targeting in Aspergillus fumigatus by Homologous Recombination Is Facilitated in a Nonhomologous End- Joining-Deficient Genetic Background. Eukaryotic Cell, 2006, 5, 212-215.	3.4	275
11	LaeA Control of Velvet Family Regulatory Proteins for Light-Dependent Development and Fungal Cell-Type Specificity. PLoS Genetics, 2010, 6, e1001226.	1.5	233
12	Fungal Morphogenesis, from the Polarized Growth of Hyphae to Complex Reproduction and Infection Structures. Microbiology and Molecular Biology Reviews, 2018, 82, .	2.9	231
13	Growing a circular economy with fungal biotechnology: a white paper. Fungal Biology and Biotechnology, 2020, 7, 5.	2.5	228
14	Current challenges of research on filamentous fungi in relation to human welfare and a sustainable bio-economy: a white paper. Fungal Biology and Biotechnology, 2016, 3, 6.	2.5	208
15	The Aspergillus nidulans MAPK Module AnSte11-Ste50-Ste7-Fus3 Controls Development and Secondary Metabolism. PLoS Genetics, 2012, 8, e1002816.	1.5	182
16	Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: Quantification of metabolic impact. Metabolic Engineering, 2008, 10, 141-153.	3.6	174
17	Crosstalk between the Ras2p-controlled Mitogen-activated Protein Kinase and cAMP Pathways during Invasive Growth of <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 1999, 10, 1325-1335.	0.9	170
18	Systematic Comparison of the Effects of Alpha-synuclein Mutations on Its Oligomerization and Aggregation. PLoS Genetics, 2014, 10, e1004741.	1.5	168

#	Article	IF	CITATIONS
19	The Transcriptional Activator GCN4 Contains Multiple Activation Domains That Are Critically Dependent on Hydrophobic Amino Acids. Molecular and Cellular Biology, 1995, 15, 1220-1233.	1.1	147
20	Contribution of Galactofuranose to the Virulence of the Opportunistic Pathogen <i>Aspergillus fumigatus</i> . Eukaryotic Cell, 2008, 7, 1268-1277.	3.4	144
21	Spotlight on Aspergillus nidulans photosensory systems. Fungal Genetics and Biology, 2010, 47, 900-908.	0.9	138
22	The COP9 signalosome is an essential regulator of development in the filamentous fungus Aspergillus nidulans. Molecular Microbiology, 2004, 49, 717-730.	1.2	134
23	The Velvet Family of Fungal Regulators Contains a DNA-Binding Domain Structurally Similar to NF-κB. PLoS Biology, 2013, 11, e1001750.	2.6	121
24	More Than a Repair Enzyme: <i>Aspergillus nidulans</i> Photolyase-like CryA Is a Regulator of Sexual Development. Molecular Biology of the Cell, 2008, 19, 3254-3262.	0.9	120
25	Transcriptional Activation and Production of Tryptophan-Derived Secondary Metabolites in Arabidopsis Roots Contributes to the Defense against the Fungal Vascular Pathogen Verticillium longisporum. Molecular Plant, 2012, 5, 1389-1402.	3.9	120
26	The Aspergillus fumigatus transcriptional activator CpcA contributes significantly to the virulence of this fungal pathogen. Molecular Microbiology, 2004, 52, 785-799.	1.2	119
27	Deletion and Allelic Exchange of the Aspergillus fumigatus veA Locus via a Novel Recyclable Marker Module. Eukaryotic Cell, 2005, 4, 1298-1307.	3.4	118
28	Transcriptional Autoregulation and Inhibition of mRNA Translation of Amino Acid Regulator Gene <i>cpcA</i> of Filamentous Fungus <i>Aspergillus nidulans</i> . Molecular Biology of the Cell, 2001, 12, 2846-2857.	0.9	116
29	Evolution of feedback-inhibited Â/Â barrel isoenzymes by gene duplication and a single mutation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 862-867.	3.3	114
30	Neurospora crassa ve-1 affects asexual conidiation. Fungal Genetics and Biology, 2008, 45, 127-138.	0.9	107
31	Establishing a versatile Golden Gate cloning system for genetic engineering in fungi. Fungal Genetics and Biology, 2014, 62, 1-10.	0.9	102
32	BcXYG1, a Secreted Xyloglucanase from <i>Botrytis cinerea</i> , Triggers Both Cell Death and Plant Immune Responses. Plant Physiology, 2017, 175, 438-456.	2.3	102
33	Cyclin-dependent kinase 5 is an upstream regulator of mitochondrial fission during neuronal apoptosis. Cell Death and Differentiation, 2007, 14, 651-661.	5.0	101
34	The 2008 update of the Aspergillus nidulans genome annotation: A community effort. Fungal Genetics and Biology, 2009, 46, S2-S13.	0.9	99
35	Mechanisms of catalysis and allosteric regulation of yeast chorismate mutase from crystal structures. Structure, 1997, 5, 1437-1452.	1.6	93
36	Amino Acid Starvation and Gcn4p Regulate Adhesive Growth andFLO11Gene Expression inSaccharomyces cerevisiae. Molecular Biology of the Cell, 2003, 14, 4272-4284.	0.9	93

#	Article	IF	CITATIONS
37	Nitrogen metabolism ofAspergillusand its role in pathogenicity. Medical Mycology, 2005, 43, 31-40.	0.3	92
38	<i><scp>V</scp>erticillium</i> transcription activator of adhesion <scp>V</scp> ta2 suppresses microsclerotia formation and is required for systemic infection of plant roots. New Phytologist, 2014, 202, 565-581.	3.5	92
39	Sterilizing immunity in the lung relies on targeting fungal apoptosis-like programmed cell death. Science, 2017, 357, 1037-1041.	6.0	92
40	An eight-subunit COP9 signalosome with an intact JAMM motif is required for fungal fruit body formation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8089-8094.	3.3	89
41	TheAspergillus nidulansF-box protein GrrA links SCF activity to meiosis. Molecular Microbiology, 2006, 61, 76-88.	1.2	84
42	Characterization of the <i>velvet</i> regulators in <i><scp>A</scp>spergillus fumigatus</i> . Molecular Microbiology, 2012, 86, 937-953.	1.2	84
43	α-Synuclein interacts with the switch region of Rab8a in a Ser129 phosphorylation-dependent manner. Neurobiology of Disease, 2014, 70, 149-161.	2.1	84
44	The COP9 signalosome mediates transcriptional and metabolic response to hormones, oxidative stress protection and cell wall rearrangement during fungal development. Molecular Microbiology, 2010, 78, 964-979.	1.2	81
45	PUX10 Is a Lipid Droplet-Localized Scaffold Protein That Interacts with CELL DIVISION CYCLE48 and Is Involved in the Degradation of Lipid Droplet Proteins. Plant Cell, 2018, 30, 2137-2160.	3.1	78
46	c-Jun and RACK1 homologues regulate a control point for sexual development in Aspergillus nidulans. Molecular Microbiology, 2000, 37, 28-41.	1.2	77
47	Differential Flo8pâ€dependent regulation of <i>FLO1</i> and <i>FLO11</i> for cell–cell and cell–substrate adherence of <i>S. cerevisiae</i> S288c. Molecular Microbiology, 2007, 66, 1276-1289.	1.2	76
48	Fungal development and the COP9 signalosome. Current Opinion in Microbiology, 2010, 13, 672-676.	2.3	74
49	Bacillus thuringiensis and Bacillus weihenstephanensis Inhibit the Growth of Phytopathogenic Verticillium Species. Frontiers in Microbiology, 2016, 7, 2171.	1.5	74
50	Saturation mutagenesis of a polyadenylation signal reveals a hexanucleotide element essential for mRNA 3' end formation in Saccharomyces cerevisiae Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 257-261.	3.3	72
51	Arabidopsis lipid dropletâ€associated protein (LDAP) – interacting protein (<scp>LDIP</scp>) influences lipid droplet size and neutral lipid homeostasis in both leaves and seeds. Plant Journal, 2017, 92, 1182-1201.	2.8	71
52	Regulation of <i>Aspergillus nidulans</i> CreA-Mediated Catabolite Repression by the F-Box Proteins Fbx23 and Fbx47. MBio, 2018, 9, .	1.8	70
53	Monitoring the Gcn4 Protein-mediated Response in the YeastSaccharomyces cerevisiae. Journal of Biological Chemistry, 1998, 273, 12696-12702.	1.6	69
54	Aggregate Clearance of α-Synuclein in Saccharomyces cerevisiae Depends More on Autophagosome and Vacuole Function Than on the Proteasome. Journal of Biological Chemistry, 2012, 287, 27567-27579.	1.6	66

GERHARD H BRAUS

#	Article	IF	CITATIONS
55	The SrkA Kinase Is Part of the SakA Mitogen-Activated Protein Kinase Interactome and Regulates Stress Responses and Development in Aspergillus nidulans. Eukaryotic Cell, 2015, 14, 495-510.	3.4	66
56	Breaking the Silence: Protein Stabilization Uncovers Silenced Biosynthetic Gene Clusters in the Fungus Aspergillus nidulans. Applied and Environmental Microbiology, 2012, 78, 8234-8244.	1.4	64
57	Interplay between Sumoylation and Phosphorylation for Protection against α-Synuclein Inclusions. Journal of Biological Chemistry, 2014, 289, 31224-31240.	1.6	63
58	Membrane-Bound Methyltransferase Complex VapA-VipC-VapB Guides Epigenetic Control of Fungal Development. Developmental Cell, 2014, 29, 406-420.	3.1	63
59	Capturing the Asc1p/Receptor for Activated C Kinase 1 (RACK1) Microenvironment at the Head Region of the 40S Ribosome with Quantitative BioID in Yeast. Molecular and Cellular Proteomics, 2017, 16, 2199-2218.	2.5	63
60	Silencing of Vlaro2 for chorismate synthase revealed that the phytopathogen Verticillium longisporum induces the cross-pathway control in the xylem. Applied Microbiology and Biotechnology, 2010, 85, 1961-1976.	1.7	62
61	Allosteric Regulation of Catalytic Activity: Escherichia coli Aspartate Transcarbamoylase versus Yeast Chorismate Mutase. Microbiology and Molecular Biology Reviews, 2001, 65, 404-421.	2.9	61
62	Yeast allosteric chorismate mutase is locked in the activated state by a single amino acid substitution. Biochemistry, 1990, 29, 3660-3668.	1.2	60
63	SCF Ubiquitin Ligase F-box Protein Fbx15 Controls Nuclear Co-repressor Localization, Stress Response and Virulence of the Human Pathogen Aspergillus fumigatus. PLoS Pathogens, 2016, 12, e1005899.	2.1	60
64	The crystal structure of allosteric chorismate mutase at 2.2-A resolution Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 10814-10818.	3.3	58
65	The Aspergillus niger GCN4 homologue, cpcA , is transcriptionally regulated and encodes an unusual leucine zipper. Molecular Microbiology, 1997, 23, 23-33.	1.2	58
66	Asymmetrically localized Bud8p and Bud9p proteins control yeast cell polarity and development. EMBO Journal, 2000, 19, 6686-6696.	3.5	57
67	Smt3/SUMO and Ubc9 are required for efficient APC/C-mediated proteolysis in budding yeast. Molecular Microbiology, 2004, 51, 1375-1387.	1.2	57
68	Transcription Factor SomA Is Required for Adhesion, Development and Virulence of the Human Pathogen Aspergillus fumigatus. PLoS Pathogens, 2015, 11, e1005205.	2.1	57
69	Cloning, primary structure and regulation of the ARO4 gene, encoding the tyrosine-inhibited 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Saccharomyces cerevisiae. Gene, 1992, 113, 67-74.	1.0	56
70	Changes of global gene expression and secondary metabolite accumulation during light-dependent Aspergillus nidulans development. Fungal Genetics and Biology, 2016, 87, 30-53.	0.9	56
71	A single point mutation results in a constitutively activated and feedback-resistant chorismate mutase of Saccharomyces cerevisiae. Journal of Bacteriology, 1989, 171, 1245-1253.	1.0	55
72	Dual Role of the Saccharomyces cerevisiae TEA/ATTS Family Transcription Factor Tec1p in Regulation of Gene Expression and Cellular Development. Eukaryotic Cell, 2002, 1, 673-686.	3.4	55

GERHARD H BRAUS

#	Article	IF	CITATIONS
73	The Plant Host <i>Brassica napus</i> Induces in the Pathogen <i>Verticillium longisporum</i> the Expression of Functional Catalase Peroxidase Which Is Required for the Late Phase of Disease. Molecular Plant-Microbe Interactions, 2012, 25, 569-581.	1.4	55
74	The Cpc1 Regulator of the Cross-Pathway Control of Amino Acid Biosynthesis Is Required for Pathogenicity of the Vascular Pathogen <i>Verticillium longisporum</i> . Molecular Plant-Microbe Interactions, 2013, 26, 1312-1324.	1.4	55
75	A novel <scp>A</scp> rabidopsis <scp>CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1)</scp> mutant with enhanced pathogenâ€induced cell death and altered receptor processing. New Phytologist, 2014, 204, 955-967.	3.5	55
76	Sexual development of Aspergillus nidulans in tryptophan auxotrophic strains. Archives of Microbiology, 1999, 172, 157-166.	1.0	54
77	The Saccharomyces Homolog of Mammalian RACK1, Cpc2/Asc1p, Is Required for FLO11-dependent Adhesive Growth and Dimorphism. Molecular and Cellular Proteomics, 2007, 6, 1968-1979.	2.5	53
78	Two different modes of cyclin Clb2 proteolysis during mitosis inSaccharomyces cerevisiae. FEBS Letters, 2000, 468, 142-148.	1.3	52
79	Dissecting the function of the different chitin synthases in vegetative growth and sexual development in Neurospora crassa. Fungal Genetics and Biology, 2015, 75, 30-45.	0.9	52
80	<i>CHK2</i> – <i>BRCA1</i> tumor-suppressor axis restrains oncogenic Aurora-A kinase to ensure proper mitotic microtubule assembly. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1817-1822.	3.3	51
81	Differential regulation of Tec1 by Fus3 and Kss1 confers signaling specificity in yeast development. Current Genetics, 2004, 46, 331-342.	0.8	50
82	<i>Verticillium dahliae</i> transcription factors Som1 and Vta3 control microsclerotia formation and sequential steps of plant root penetration and colonisation to induce disease. New Phytologist, 2019, 221, 2138-2159.	3.5	50
83	Carbonic anhydrase in Acetobacterium woodii and other acetogenic bacteria. Journal of Bacteriology, 1997, 179, 7197-7200.	1.0	49
84	C-Terminal Tyrosine Residue Modifications Modulate the Protective Phosphorylation of Serine 129 of α-Synuclein in a Yeast Model of Parkinson's Disease. PLoS Genetics, 2016, 12, e1006098.	1.5	49
85	TheTRP4gene ofSaccharomyces cerevisiae: isolation and structural analysis. Nucleic Acids Research, 1986, 14, 6357-6373.	6.5	48
86	Three classes of mammalian transcription activation domain stimulate transcription in Schizosaccharomyces pombe. EMBO Journal, 1997, 16, 5722-5729.	3.5	47
87	How to build a fungal fruit body: from uniform cells to specialized tissue. Molecular Microbiology, 2007, 64, 873-876.	1.2	47
88	Crystal structure of the T state of allosteric yeast chorismate mutase and comparison with the R state Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 3330-3334.	3.3	46
89	Genetically Encoding Lysine Modifications on Histone H4. ACS Chemical Biology, 2015, 10, 939-944.	1.6	46
90	Substrate and Metal Complexes of 3-Deoxy-d-arabino-heptulosonate-7-phosphate Synthase from Saccharomyces cerevisiae Provide New Insights into the Catalytic Mechanism. Journal of Molecular Biology, 2004, 337, 675-690.	2.0	45

#	Article	IF	CITATIONS
91	Nucleotide sequence variation of chitin synthase genes among ectomycorrhizal fungi and its potential use in taxonomy. Applied and Environmental Microbiology, 1994, 60, 3105-3111.	1.4	45
92	Cloning of the ARO3 gene of Saccharomyces cerevisiae and its regulation. Molecular Genetics and Genomics, 1986, 205, 353-357.	2.4	44
93	Impact of the cross-pathway control on the regulation of lysine and penicillin biosynthesis in Aspergillus nidulans. Current Genetics, 2003, 42, 209-219.	0.8	44
94	Analysis of the lipid body proteome of the oleaginous alga Lobosphaera incisa. BMC Plant Biology, 2017, 17, 98.	1.6	44
95	Identification of Low-Abundance Lipid Droplet Proteins in Seeds and Seedlings. Plant Physiology, 2020, 182, 1326-1345.	2.3	44
96	The WD protein Cpc2p is required for repression of Gcn4 protein activity in yeast in the absence of amino-acid starvation. Molecular Microbiology, 1999, 31, 807-822.	1.2	43
97	Inhibition of APC-mediated proteolysis by the meiosis-specific protein kinase Ime2. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4385-4390.	3.3	43
98	Evolution of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase-encoding genes in the yeast Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9784-9789.	3.3	43
99	Manipulation of fungal development as source of novel secondary metabolites for biotechnology. Applied Microbiology and Biotechnology, 2014, 98, 8443-8455.	1.7	43
100	The truncated NLR protein TIRâ€NBS13 is a MOS6/IMPORTINâ€Î±3 interaction partner required for plant immunity. Plant Journal, 2017, 92, 808-821.	2.8	43
101	Cloning, primary structure, and regulation of the HIS7 gene encoding a bifunctional glutamine amidotransferase: cyclase from Saccharomyces cerevisiae. Journal of Bacteriology, 1993, 175, 5548-5558.	1.0	42
102	The tryptophan synthase-encoding trpB gene of Aspergillus nidulans is regulated by the cross-pathway control system. Molecular Genetics and Genomics, 2000, 263, 867-876.	2.4	42
103	Repression of GCN4 mRNA Translation by Nitrogen Starvation in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2001, 276, 25661-25671.	1.6	42
104	The protein kinase ImeB is required for lightâ€mediated inhibition of sexual development and for mycotoxin production in <i>Aspergillus nidulans</i> . Molecular Microbiology, 2009, 71, 1278-1295.	1.2	42
105	Control of Multicellular Development by the Physically Interacting Deneddylases DEN1/DenA and COP9 Signalosome. PLoS Genetics, 2013, 9, e1003275.	1.5	42
106	Arrangement of genes TRP1 and TRP3 of Saccharomyces cerevisiae strains. Archives of Microbiology, 1985, 142, 383-388.	1.0	41
107	The COP9 signalosome counteracts the accumulation of cullin SCF ubiquitin E3 RING ligases during fungal development. Molecular Microbiology, 2012, 83, 1162-1177.	1.2	40
108	Interplay of the fungal sumoylation network for control of multicellular development. Molecular Microbiology, 2013, 90, 1125-1145.	1.2	40

#	Article	IF	CITATIONS
109	Verticillium dahliae VdTHI4, involved in thiazole biosynthesis, stress response and DNA repair functions, is required for vascular disease induction in tomato. Environmental and Experimental Botany, 2014, 108, 14-22.	2.0	40
110	Controlling transcription by destruction: the regulation of yeast Gcn4p stability. Current Genetics, 2003, 44, 8-18.	0.8	39
111	Infections with the vascular pathogens Verticillium longisporum and Verticillium dahliae induce distinct disease symptoms and differentially affect drought stress tolerance of Arabidopsis thaliana. Environmental and Experimental Botany, 2014, 108, 23-37.	2.0	38
112	Identification of Protein Complexes from Filamentous Fungi with Tandem Affinity Purification. Methods in Molecular Biology, 2012, 944, 191-205.	0.4	37
113	RACK1/Asc1p, a Ribosomal Node in Cellular Signaling. Molecular and Cellular Proteomics, 2013, 12, 87-105.	2.5	37
114	The trehalose protective mechanism during thermal stress in Saccharomyces cerevisiae: the roles of Ath1 and Agt1. FEMS Yeast Research, 2018, 18, .	1.1	37
115	Purification and properties of the 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (phenylalanine-inhibitable) of Saccharomyces cerevisiae. FEBS Journal, 1989, 186, 361-366.	0.2	36
116	Glucose and Ras Activity Influence the Ubiquitin Ligases APC/C and SCF in Saccharomyces cerevisiae. Genetics, 2000, 154, 1509-1521.	1.2	36
117	Amino Acid and Adenine Cross-pathway Regulation Act through the Same 5′-TGACTC-3′ Motif in the Yeast HIS7 Promoter. Journal of Biological Chemistry, 1996, 271, 29637-29643.	1.6	35
118	The aroC Gene of Aspergillus nidulansCodes for a Monofunctional, Allosterically Regulated Chorismate Mutase. Journal of Biological Chemistry, 1999, 274, 22275-22282.	1.6	35
119	A Small Membrane-peripheral Region Close to the Active Center Determines Regioselectivity of Membrane-bound Fatty Acid Desaturases from Aspergillus nidulans. Journal of Biological Chemistry, 2007, 282, 26666-26674.	1.6	35
120	Posttranslational Modifications and Clearing of α-Synuclein Aggregates in Yeast. Biomolecules, 2015, 5, 617-634.	1.8	33
121	The yeast actin intron contains a cryptic promoter that can be switched on by preventing transcriptional interference. Nucleic Acids Research, 1992, 20, 4733-4739.	6.5	32
122	Regulation of the Aspergillus nidulans hisB gene by histidine starvation. Current Genetics, 2001, 38, 314-322.	0.8	32
123	Properties of the recombinant glucose/galactose dehydrogenase from the extreme thermoacidophile, Picrophilus torridus. FEBS Journal, 2005, 272, 1054-1062.	2.2	32
124	The Yeast HtrA Orthologue Ynm3 Is a Protease with Chaperone Activity that Aids Survival Under Heat Stress. Molecular Biology of the Cell, 2009, 20, 68-77.	0.9	32
125	The two 3-deoxy- d - arabino -heptulosonate-7-phosphate synthase isoenzymes from Saccharomyces cerevisiae show different kinetic modes of inhibition. Archives of Microbiology, 1998, 169, 517-524.	1.0	31
126	Different Domains of the Essential GTPase Cdc42p Required for Growth and Development of Saccharomyces cerevisiae. Molecular and Cellular Biology, 2001, 21, 235-248.	1.1	31

#	Article	IF	CITATIONS
127	conF and conJ contribute to conidia germination and stress response in the filamentous fungus Aspergillus nidulans. Fungal Genetics and Biology, 2013, 56, 42-53.	0.9	31
128	MybA, a transcription factor involved in conidiation and conidial viability of the human pathogen <i>Aspergillus fumigatus</i> . Molecular Microbiology, 2017, 105, 880-900.	1.2	31
129	LDIP cooperates with SEIPIN and LDAP to facilitate lipid droplet biogenesis in Arabidopsis. Plant Cell, 2021, 33, 3076-3103.	3.1	31
130	Molecular diagnosis to discriminate pathogen and apathogen species of the hybrid Verticillium longisporum on the oilseed crop Brassica napus. Applied Microbiology and Biotechnology, 2013, 97, 4467-4483.	1.7	30
131	Structure of the ARO3 gene of Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1988, 214, 165-169.	2.4	29
132	Molecular characterization of the Aspergillus nidulans fbxA encoding an F-box protein involved in xylanase induction. Fungal Genetics and Biology, 2012, 49, 130-140.	0.9	29
133	Yeast reveals similar molecular mechanisms underlying alpha- and beta-synuclein toxicity. Human Molecular Genetics, 2016, 25, 275-290.	1.4	29
134	Asc1p/RACK1 Connects Ribosomes to Eukaryotic Phosphosignaling. Molecular and Cellular Biology, 2017, 37, .	1.1	29
135	Velvet domain protein VosA represses the zinc cluster transcription factor SclB regulatory network for Aspergillus nidulans asexual development, oxidative stress response and secondary metabolism. PLoS Genetics, 2018, 14, e1007511.	1.5	29
136	Sexual Diploids of <i>Aspergillus nidulans</i> Do Not Form by Random Fusion of Nuclei in the Heterokaryon. Genetics, 2001, 157, 141-147.	1.2	29
137	Amino Acid-Dependent Gcn4p Stability Regulation Occurs Exclusively in the Yeast Nucleus. Eukaryotic Cell, 2002, 1, 663-672.	3.4	28
138	Tyrosine and Tryptophan Act through the Same Binding Site at the Dimer Interface of Yeast Chorismate Mutase. Journal of Biological Chemistry, 1998, 273, 17012-17017.	1.6	27
139	HARO7 Encodes Chorismate Mutase of the Methylotrophic Yeast Hansenula polymorpha and Is Derepressed upon Methanol Utilization. Journal of Bacteriology, 2000, 182, 4188-4197.	1.0	27
140	Recruitment of the inhibitor Cand1 to the cullin substrate adaptor site mediates interaction to the neddylation site. Molecular Biology of the Cell, 2011, 22, 153-164.	0.9	27
141	Heavy Metal-Induced Expression of PcaA Provides Cadmium Tolerance to Aspergillus fumigatus and Supports Its Virulence in the Galleria mellonella Model. Frontiers in Microbiology, 2018, 9, 744.	1.5	26
142	Molecular analysis of the yeast SER1 gene encoding 3-phosphoserine aminotransferase: regulation by general control and serine repression. Current Genetics, 1995, 27, 501-508.	0.8	25
143	Yeast Ran-binding Protein Yrb1p Is Required for Efficient Proteolysis of Cell Cycle Regulatory Proteins Pds1p and Sic1p. Journal of Biological Chemistry, 2000, 275, 38929-38937.	1.6	25
144	Fungal S-adenosylmethionine synthetase and the control of development and secondary metabolism in Aspergillus nidulans. Fungal Genetics and Biology, 2012, 49, 443-454.	0.9	25

#	Article	IF	CITATIONS
145	RNAseq analysis of Aspergillus fumigatus in blood reveals a just wait and see resting stage behavior. BMC Genomics, 2015, 16, 640.	1.2	25
146	Broad Substrate-Specific Phosphorylation Events Are Associated With the Initial Stage of Plant Cell Wall Recognition in Neurospora crassa. Frontiers in Microbiology, 2019, 10, 2317.	1.5	25
147	Basal expression of the Aspergillus fumigatus transcriptional activator CpcA is sufficient to support pulmonary aspergillosis. Fungal Genetics and Biology, 2008, 45, 693-704.	0.9	24
148	Synergistic inhibition of APC/C by glucose and activated Ras proteins can be mediated by each of the Tpk1–3 proteins in Saccharomyces cerevisiae. Microbiology (United Kingdom), 2003, 149, 1205-1216.	0.7	23
149	The csnD/csnE Signalosome Genes Are Involved in the Aspergillus nidulans DNA Damage Response. Genetics, 2005, 171, 1003-1015.	1.2	23
150	Induction of jlbA mRNA synthesis for a putative bZIP protein of Aspergillus nidulans by amino acid starvation. Current Genetics, 2001, 39, 327-334.	0.8	22
151	Transcriptional profiling of Saccharomyces cerevisiae cells under adhesion-inducing conditions. Molecular Genetics and Genomics, 2005, 273, 382-393.	1.0	22
152	FLO11 mediated filamentous growth of the yeast Saccharomyces cerevisiae depends on the expression of the ribosomal RPS26 genes. Molecular Genetics and Genomics, 2006, 276, 113-125.	1.0	22
153	Yeast Gcn4p Stabilization Is Initiated by the Dissociation of the Nuclear Pho85p/Pcl5p Complex. Molecular Biology of the Cell, 2006, 17, 2952-2962.	0.9	22
154	The C-terminal Region of the Meiosis-specific Protein Kinase Ime2 Mediates Protein Instability and is Required for Normal Spore Formation in Budding Yeast. Journal of Molecular Biology, 2008, 378, 31-43.	2.0	22
155	The putative oncogene CEP72 inhibits the mitotic function of BRCA1 and induces chromosomal instability. Oncogene, 2016, 35, 2398-2406.	2.6	22
156	Production of the Fragrance Geraniol in Peroxisomes of a Product-Tolerant Baker's Yeast. Frontiers in Bioengineering and Biotechnology, 2020, 8, 582052.	2.0	22
157	A GCN4 protein recognition element is not sufficient for GCN4-dependent regulation of transcription in the ARO7 promoter of Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1990, 224, 57-64.	2.4	21
158	Molecular cloning, characterization and analysis of the regulation of theAR02gene, encoding chorismate synthase, ofSaccharomyces cerevisiae. Molecular Microbiology, 1991, 5, 2143-2153.	1.2	21
159	YMC1, a yeast gene encoding a new putative mitochondrial carrier protein. Yeast, 1993, 9, 301-305.	0.8	20
160	The velvet protein Vel1 controls initial plant root colonization and conidia formation for xylem distribution in Verticillium wilt. PLoS Genetics, 2021, 17, e1009434.	1.5	20
161	The Nuclear Migration Protein NUDF/LIS1 Forms a Complex with NUDC and BNFA at Spindle Pole Bodies. Eukaryotic Cell, 2008, 7, 1041-1052.	3.4	19
162	A novel STRIPAK complex component mediates hyphal fusion and fruitingâ€body development in filamentous fungi. Molecular Microbiology, 2018, 110, 513-532.	1.2	19

#	Article	IF	CITATIONS
163	DEAD-box RNA helicase Dbp4/DDX10 is an enhancer of α-synuclein toxicity and oligomerization. PLoS Genetics, 2021, 17, e1009407.	1.5	19
164	Replacement of the yeast TRP4 3??? untranslated region by a hammerhead ribozyme results in a stable and efficiently exported mRNA that lacks a poly(A) tail. Rna, 2002, 8, 336-344.	1.6	18
165	Integration of the catalytic subunit activates deneddylase activity <i>in vivo</i> as final step in fungal <scp>COP</scp> 9 signalosome assembly. Molecular Microbiology, 2015, 97, 110-124.	1.2	18
166	The DenA/DEN1 Interacting Phosphatase DipA Controls Septa Positioning and Phosphorylation-Dependent Stability of Cytoplasmatic DenA/DEN1 during Fungal Development. PLoS Genetics, 2016, 12, e1005949.	1.5	18
167	NBR1 is involved in selective pexophagy in filamentous ascomycetes and can be functionally replaced by a tagged version of its human homolog. Autophagy, 2019, 15, 78-97.	4.3	18
168	Genome sequencing of evolved aspergilli populations reveals robust genomes, transversions in A. flavus, and sexual aberrancy in non-homologous end-joining mutants. BMC Biology, 2019, 17, 88.	1.7	18
169	Verticillium longisporum Elicits Media-Dependent Secretome Responses With Capacity to Distinguish Between Plant-Related Environments. Frontiers in Microbiology, 2020, 11, 1876.	1.5	18
170	Mutual Cross Talk between the Regulators Hac1 of the Unfolded Protein Response and Gcn4 of the General Amino Acid Control of Saccharomyces cerevisiae. Eukaryotic Cell, 2013, 12, 1142-1154.	3.4	17
171	A consensus transcription termination sequence in the promoter region is necessary for efficient gene expression of the TRP1 gene of Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1988, 212, 495-504.	2.4	16
172	Multiple Factors Prevent Transcriptional Interference at the Yeast ARO4-HIS7 Locus. Journal of Biological Chemistry, 2002, 277, 21440-21445.	1.6	16
173	Deletion of Aspergillus nidulans aroC using a novel blaster module that combines ET cloning and marker rescue. Molecular Genetics and Genomics, 2003, 268, 675-683.	1.0	16
174	Chorismate mutase of Thermus thermophilus is a monofunctional AroH class enzyme inhibited by tyrosine. Archives of Microbiology, 2004, 181, 195-203.	1.0	16
175	Arabidopsis thaliana EARLY RESPONSIVE TO DEHYDRATION 7 Localizes to Lipid Droplets via Its Senescence Domain. Frontiers in Plant Science, 2021, 12, 658961.	1.7	16
176	Regulation of the TRP4 gene of Saccharomyces cerevisiae at the transcriptional level and functional analysis of its promoter. Molecular Genetics and Genomics, 1988, 211, 168-175.	2.4	15
177	The Adjacent Yeast Genes ARO4 and HIS7Carry No Intergenic Region. Journal of Biological Chemistry, 1997, 272, 26318-26324.	1.6	15
178	Developmental and metabolic regulation of the phosphoglucomutase-encoding gene, pgmB, of Aspergillus nidulans. Molecular Genetics and Genomics, 2000, 262, 1001-1011.	2.4	15
179	COP9 Signalosome Interaction with UspA/Usp15 Deubiquitinase Controls VeA-Mediated Fungal Multicellular Development. Biomolecules, 2019, 9, 238.	1.8	15
180	The High Osmolarity Glycerol Mitogen-Activated Protein Kinase regulates glucose catabolite repression in filamentous fungi. PLoS Genetics, 2020, 16, e1008996.	1.5	15

GERHARD H BRAUS

#	Article	IF	CITATIONS
181	The Novel J-Domain Protein Mrj1 Is Required for Mitochondrial Respiration and Virulence in Cryptococcus neoformans. MBio, 2020, 11, .	1.8	15
182	Sexual Development in Ascomycetes Fruit Body Formation of Aspergillus nidulans. , 2002, , .		15
183	Sem1 links proteasome stability and specificity to multicellular development. PLoS Genetics, 2018, 14, e1007141.	1.5	15
184	Activation and repression of the yeast ARO3 gene by global transcription factors. Molecular Microbiology, 1995, 15, 167-178.	1.2	13
185	Polyadenylation of rRNA- and tRNA-based yeast transcripts cleaved by internal ribozyme activity. Current Genetics, 2003, 43, 255-262.	0.8	13
186	The Vta1 transcriptional regulator is required for microsclerotia melanization in Verticillium dahliae. Fungal Biology, 2020, 124, 490-500.	1.1	13
187	Vacuole fragmentation depends on a novel Atg18-containing retromer-complex. Autophagy, 2023, 19, 278-295.	4.3	13
188	Cloning and characterisation of a yeast homolog of the mammalian ribosomal protein L9. Nucleic Acids Research, 1991, 19, 5785-5785.	6.5	12
189	Refined molecular hinge between allosteric and catalytic domain determines allosteric regulation and stability of fungal chorismate mutase. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6631-6636.	3.3	12
190	Posttranscriptional regulation of <i>FLO11</i> upon amino acid starvation in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2008, 8, 225-236.	1.1	12
191	The devil is in the details: comparison between COP9 signalosome (CSN) and the LID of the 26S proteasome. Current Genetics, 2016, 62, 129-136.	0.8	12
192	Proteomic profiling of the antifungal drug response of Aspergillus fumigatus to voriconazole. International Journal of Medical Microbiology, 2017, 307, 398-408.	1.5	12
193	SEED LIPID DROPLET PROTEIN1, SEED LIPID DROPLET PROTEIN2, and LIPID DROPLET PLASMA MEMBRANE ADAPTOR mediate lipid droplet–plasma membrane tethering. Plant Cell, 2022, 34, 2424-2448.	3.1	12
194	Regulation of hisHF Transcription of Aspergillus nidulans by Adenine and Amino Acid Limitation. Fungal Genetics and Biology, 2001, 32, 21-31.	0.9	11
195	Regulative fine-tuning of the two novel DAHP isoenzymes aroFp and aroGp of the filamentous fungus Aspergillus nidulans. Archives of Microbiology, 2001, 175, 112-121.	1.0	11
196	The yeast CPC2/ASC1 gene is regulated by the transcription factors Fhl1p and Ifh1p. Current Genetics, 2006, 49, 218-228.	0.8	11
197	Amino acid acquisition, cross-pathway control, and virulence inAspergillus. Medical Mycology, 2006, 44, 91-94.	0.3	11
198	Sumoylation Protects Against β-Synuclein Toxicity in Yeast. Frontiers in Molecular Neuroscience, 2018, 11, 94.	1.4	11

#	Article	IF	CITATIONS
199	Multiâ€omics analysis of xylem sap uncovers dynamic modulation of poplar defenses by ammonium and nitrate. Plant Journal, 2022, 111, 282-303.	2.8	11
200	A Process Independent of the Anaphase-promoting Complex Contributes to Instability of the Yeast S Phase Cyclin Clb5. Journal of Biological Chemistry, 2007, 282, 26614-26622.	1.6	10
201	Structure–functional analysis of the Dictyoglomus cell envelope. Systematic and Applied Microbiology, 2012, 35, 279-290.	1.2	10
202	Antimicrobial propensity of ultrananocrystalline diamond films with embedded silver nanodroplets. Diamond and Related Materials, 2019, 93, 168-178.	1.8	10
203	The COP9 signalosome mediates the Spt23 regulated fatty acid desaturation and ergosterol biosynthesis. FASEB Journal, 2020, 34, 4870-4889.	0.2	10
204	Unfolded Protein Response and Scaffold Independent Pheromone MAP Kinase Signaling Control Verticillium dahliae Growth, Development, and Plant Pathogenesis. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /C	ve ils ck 10	0 Tfið0 537 To
205	Nuclear import of yeast Gcn4p requires karyopherins Srp1p and Kap95p. Molecular Genetics and Genomics, 2004, 271, 257-266.	1.0	9
206	Degradation of <i>Saccharomyces cerevisiae</i> Transcription Factor Gcn4 Requires a C-Terminal Nuclear Localization Signal in the Cyclin Pcl5. Eukaryotic Cell, 2009, 8, 496-510.	3.4	9
207	A structural model of PpoA derived from SAXS-analysis—Implications for substrate conversion. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1449-1457.	1.2	9
208	Integration of Fungus-Specific CandA-C1 into a Trimeric CandA Complex Allowed Splitting of the Gene for the Conserved Receptor Exchange Factor of CullinA E3 Ubiquitin Ligases in Aspergilli. MBio, 2019, 10, .	1.8	9
209	Hülle Cells of Aspergillus nidulans with Nuclear Storage and Developmental Backup Functions Are Reminiscent of Multipotent Stem Cells. MBio, 2020, 11, .	1.8	9
210	Regulation of the yeast HIS7 gene by the global transcription factor Abf1p. Molecular Genetics and Genomics, 1997, 256, 136-146.	2.4	8
211	A Feedback Circuit between Transcriptional Activation and Self-Destruction of Gcn4 Separates Its Metabolic and Morphogenic Response in Diploid Yeasts. Journal of Molecular Biology, 2011, 405, 909-925.	2.0	8
212	Identification of Two Novel Peptides That Inhibit α-Synuclein Toxicity and Aggregation. Frontiers in Molecular Neuroscience, 2021, 14, 659926.	1.4	8
213	Biosynthesis of Antibacterial Iron-Chelating Tropolones in Aspergillus nidulans as Response to Glycopeptide-Producing Streptomycetes. Frontiers in Fungal Biology, 2022, 2, .	0.9	8
214	Messenger RNA 3?-end formation of a DNA fragment from the human c-myc 3?-end region in Saccharomyces cerevisiae. Current Genetics, 1993, 23, 201-204.	0.8	7
215	The transcriptional apparatus required for mRNA encoding genes in the yeastSaccharomyces cerevisiaeemerges from a jigsaw puzzle of transcription factors. FEMS Microbiology Reviews, 1996, 19, 117-136.	3.9	7
216	Dissection of mitotic functions of the yeast cyclin Clb2. Cell Cycle, 2010, 9, 2611-2619.	1.3	7

#	Article	IF	CITATIONS
217	Cytoplasmic retention and degradation of a mitotic inducer enable plant infection by a pathogenic fungus. ELife, 2019, 8, .	2.8	7
218	Secondary metabolites of Hülle cells mediate protection of fungal reproductive and overwintering structures against fungivorous animals. ELife, 2021, 10, .	2.8	7
219	Different positioning elements select poly(A) sites at the 3'-end of GCN4 mRNA in the yeast Saccharomyces cerevisiae. Nucleic Acids Research, 1999, 27, 4751-4758.	6.5	6
220	Nucleosome Position-Dependent and -Independent Activation of HIS7 Expression in Saccharomyces cerevisiae by Different Transcriptional Activators. Eukaryotic Cell, 2003, 2, 876-885.	3.4	6
221	Fluorescent pseudomonads pursue media-dependent strategies to inhibit growth of pathogenic Verticillium fungi. Applied Microbiology and Biotechnology, 2018, 102, 817-831.	1.7	6
222	Novel Fus3―and Ste12â€interacting protein FsiA activates cell fusionâ€related genes in both Ste12â€dependen and â€independent manners in Ascomycete filamentous fungi. Molecular Microbiology, 2021, 115, 723-738.	^t 1.2	6
223	Pseudomonas Strains Induce Transcriptional and Morphological Changes and Reduce Root Colonization of Verticillium spp Frontiers in Microbiology, 2021, 12, 652468.	1.5	6
224	A 20â€kb lineageâ€specific genomic region tames virulence in pathogenic amphidiploid Verticillium longisporum. Molecular Plant Pathology, 2021, 22, 939-953.	2.0	6
225	Adhesion as a Focus in Trichoderma–Root Interactions. Journal of Fungi (Basel, Switzerland), 2022, 8, 372.	1.5	6
226	Crystallization and preliminary X-ray analysis of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (tyrosine inhibitable) from Saccharomyces cerevisiae. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 1586-1588.	2.5	5
227	5′TRU: Identification and Analysis of Translationally Regulative 5′Untranslated Regions in Amino Acid Starved Yeast Cells. Molecular and Cellular Proteomics, 2011, 10, M110.003350.	2.5	5
228	Draft Genome Sequence of the Phenazine-Producing Pseudomonas fluorescens Strain 2-79. Genome Announcements, 2015, 3, .	0.8	5
229	α-Synuclein Decreases the Abundance of Proteasome Subunits and Alters Ubiquitin Conjugates in Yeast. Cells, 2021, 10, 2229.	1.8	5
230	A tyrosine residue is involved in the allosteric binding of tryptophan to yeast chorismate mutase. BBA - Proteins and Proteomics, 1993, 1203, 71-76.	2.1	4
231	Yeast-Based Screens to Target Alpha-Synuclein Toxicity. Methods in Molecular Biology, 2019, 1948, 145-156.	0.4	4
232	The role of <i>Aspergillus nidulans</i> polo-like kinase PlkA in microtubule-organizing center control. Journal of Cell Science, 2021, 134, .	1.2	3
233	Cloning of the LEU2 gene of Saccharomyces cerevisiae by in vivo recombination. Archives of Microbiology, 1989, 152, 263-268.	1.0	2
234	Draft Genome Sequence of the Beneficial Rhizobacterium Pseudomonas fluorescens DSM 8569, a Natural Isolate of Oilseed Rape (Brassica napus). Genome Announcements, 2015, 3, .	0.8	2

#	Article	IF	CITATIONS
235	Importance of Stress Response Mechanisms in Filamentous Fungi for Agriculture and Industry. , 2018, , 189-222.		2
236	Dynamic and Reversible Aggregation of the Human CAP Superfamily Member GAPR-1 in Protein Inclusions in Saccharomyces cerevisiae. Journal of Molecular Biology, 2021, 433, 167162.	2.0	2
237	8 Coordination of Fungal Secondary Metabolism and Development. , 2020, , 173-205.		2
238	In vitro Deneddylation Assay. Bio-protocol, 2016, 6, .	0.2	2
239	A J Domain Protein Functions as a Histone Chaperone to Maintain Genome Integrity and the Response to DNA Damage in a Human Fungal Pathogen. MBio, 2021, 12, e0327321.	1.8	2
240	Response to Comment on "Sterilizing immunity in the lung relies on targeting fungal apoptosis-like programmed cell death― Science, 2018, 360, .	6.0	1
241	Draft Genome Sequence of Saccharomyces cerevisiae LW2591Y, a Laboratory Strain for <i>In Vivo</i> Multigene Assemblies. Microbiology Resource Announcements, 2021, 10, .	0.3	1
242	The Nma1 protein promotes long distance transport mediated by early endosomes in Ustilago maydis. Molecular Microbiology, 2021, , .	1.2	1
243	Amino Acid Biosynthesis. , 2005, , 41-60.		0
244	Title is missing!. , 2020, 16, e1008996.		0
245	Title is missing!. , 2020, 16, e1008996.		0
246	Title is missing!. , 2020, 16, e1008996.		0
247	Title is missing!. , 2020, 16, e1008996.		0
248	Design of typical genes for heterologous gene expression. Scientific Reports, 2022, 12, .	1.6	0