
Jian-Bin Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3888146/publications.pdf Version: 2024-02-01

IIAN-RIN LIN

#	Article	IF	CITATIONS
1	Carbene Character in a Series of Neutral PC _{carbene} P Cobalt(I) Complexes: Radical Carbenes versus Nucleophilic Carbenes. Organometallics, 2022, 41, 235-245.	1.1	2
2	Separation of CO2 and N2 on a hydrophobic metal organic framework CALF-20. Chemical Engineering Journal, 2022, 442, 136263.	6.6	27
3	Substituent effects on the intermolecular interactions and emission behaviors in pyrene-based mechanochromic luminogens. Journal of Materials Chemistry C, 2022, 10, 9310-9318.	2.7	16
4	Studies of cyanomethylcarbamoyl-bridged anthracene and pyrene fluorophores. New Journal of Chemistry, 2021, 45, 17366-17376.	1.4	4
5	Stereoselective copper-catalyzed heteroarene C–H functionalization/Michael-type annulation cascade with α-diazocarbonyls. Chemical Communications, 2021, 57, 10556-10559.	2.2	3
6	Activation of ammonia and hydrazine by electron rich Fe(<scp>ii</scp>) complexes supported by a dianionic pentadentate ligand platform through a common terminal Fe(<scp>iii</scp>) amido intermediate. Chemical Science, 2021, 12, 2231-2241.	3.7	21
7	Synthesis of [2.2]Paracyclophane/9-Alkylfluorene Hybrids and the Discovery of a Solvent-assisted Rearrangement. Organic Letters, 2021, 23, 5461-5465.	2.4	3
8	Copper-Catalyzed Annulation of Indolyl α-Diazocarbonyl Compounds Leads to Structurally Rearranged Carbazoles. Organic Letters, 2021, 23, 5559-5564.	2.4	6
9	A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture. Science, 2021, 374, 1464-1469.	6.0	308
10	Tandem deoxygenative hydrosilation of carbon dioxide with a cationic scandium hydridoborate and B(C ₆ F ₅) ₃ . Dalton Transactions, 2020, 49, 95-101.	1.6	14
11	Synthesis, Characterization, and Reactivity of Neutral Octahedral Alkyl-Cobalt(III) Complexes Bearing a Dianionic Pentadentate Ligand. Organometallics, 2020, 39, 2269-2277.	1.1	5
12	Cytotoxicity, cellular localization and photophysical properties of Re(I) tricarbonyl complexes bound to cysteine and its derivatives. Journal of Biological Inorganic Chemistry, 2020, 25, 759-776.	1.1	14
13	Three Sequential Hydrolysis Products of the Ubiquitous Cu24 Isophthalate Metal–Organic Polyhedra. Inorganic Chemistry, 2019, 58, 9874-9881.	1.9	14
14	Design Strategy for the Controlled Generation of Cationic Frameworks and Ensuing Anion-Exchange Capabilities. ACS Applied Materials & Interfaces, 2019, 11, 3181-3188.	4.0	11
15	Two 2D microporous MOFs based on bent carboxylates and a linear spacer for selective CO ₂ adsorption. CrystEngComm, 2019, 21, 535-543.	1.3	13
16	Three Co(II) Metal–Organic Frameworks with Diverse Architectures for Selective Gas Sorption and Magnetic Studies. Inorganic Chemistry, 2019, 58, 6246-6256.	1.9	34
17	Grafting of a Molecular Rhenium CO ₂ Reduction Catalyst onto Colloid-Imprinted Carbon. ACS Applied Energy Materials, 2019, 2, 2414-2418.	2.5	24
18	Ligand-centered electrochemical processes enable CO ₂ reduction with a nickel bis(triazapentadienyl) complex. Sustainable Energy and Fuels, 2019, 3, 1172-1181.	2.5	7

Jian-Bin Lin

#	Article	IF	CITATIONS
19	Synthesis and Structures of Stable Pt ^{II} and Pt ^{IV} Alkylidenes: Evidence for Ï€â€Bonding and Relativistic Stabilization. Chemistry - A European Journal, 2019, 25, 4305-4308.	1.7	6
20	Mechanical Properties of a Metal–Organic Framework formed by Covalent Cross-Linking of Metal–Organic Polyhedra. Journal of the American Chemical Society, 2019, 141, 1045-1053.	6.6	89
21	A 3D Microporous MOF with <i>mab</i> Topology for Selective CO ₂ Adsorption and Separation. ChemistrySelect, 2018, 3, 917-921.	0.7	15
22	Scandium alkyl and hydride complexes supported by a pentadentate diborate ligand: reactions with CO ₂ and N ₂ O. Dalton Transactions, 2018, 47, 13680-13688.	1.6	23
23	Single Crystal Proton Conduction Study of a Metal Organic Framework of Modest Water Stability. Journal of the American Chemical Society, 2017, 139, 7176-7179.	6.6	133
24	Windmill Co ₄ {Co ₄ (μ ₄ â€O)} with 16 Divergent Branches Forming a Family of Metal–Organic Frameworks: Organic Metrics Control Topology, Gas Sorption, and Magnetism. Chemistry - A European Journal, 2016, 22, 12088-12094.	1.7	34
25	Larger pores via shorter pillars in flexible layer coordination networks. Canadian Journal of Chemistry, 2016, 94, 449-452.	0.6	6
26	Design of a Humidity-Stable Metal–Organic Framework Using a Phosphonate Monoester Ligand. Inorganic Chemistry, 2015, 54, 1185-1187.	1.9	40
27	Molecular Engineering of "Clickâ€â€Phospholes Towards Selfâ€Assembled Luminescent Soft Materials. Advanced Functional Materials, 2014, 24, 897-906.	7.8	41
28	Pyridinium linkers and mixed anions in cationic metal–organic frameworks. Inorganic Chemistry Frontiers, 2014, 1, 302-305.	3.0	28
29	Synthesis and Properties of Cholesteric Click-Phospholes. Organic Letters, 2014, 16, 1366-1369.	2.4	16
30	Phosphinine Lipids: A Successful Marriage between Electronâ€Acceptor and Selfâ€Assembly Features. Angewandte Chemie - International Edition, 2013, 52, 8990-8994.	7.2	27
31	Synthesis of <i>P</i> -Triazole Dithienophospholes and a Cyclodextrin-Based Sensor via Click Chemistry. Organic Letters, 2013, 15, 5322-5325.	2.4	29
32	New Zn-Aminotriazolate-Dicarboxylate Frameworks: Synthesis, Structures, and Adsorption Properties. Crystal Growth and Design, 2013, 13, 2118-2123.	1.4	76
33	Highly-connected, porous coordination polymers based on [M4(μ3-OH)2] (M = Coll and Nill) clusters: different networks, adsorption and magnetic properties. Dalton Transactions, 2012, 41, 4199.	1.6	67
34	Geometry analysis and systematic synthesis of highly porous isoreticular frameworks with a unique topology. Nature Communications, 2012, 3, 642.	5.8	145
35	Chemical/Physical Pressure Tunable Spin-Transition Temperature and Hysteresis in a Two-Step Spin Crossover Porous Coordination Framework. Inorganic Chemistry, 2012, 51, 9423-9430.	1.9	84
36	Metal Azolate Frameworks: From Crystal Engineering to Functional Materials. Chemical Reviews, 2012, 112, 1001-1033.	23.0	1,512

Jian-Bin Lin

#	Article	IF	CITATIONS
37	An ionic porous coordination framework exhibiting high CO ₂ affinity and CO ₂ /CH ₄ selectivity. Chemical Communications, 2011, 47, 926-928.	2.2	111
38	Flexible porous coordination polymers constructed from 1,2-bis(4-pyridyl)hydrazine via solvothermal in situ reduction of 4,4′-azopyridine. Dalton Transactions, 2011, 40, 8549.	1.6	36
39	Solvent/additive-free synthesis of porous/zeolitic metal azolate frameworks from metal oxide/hydroxide. Chemical Communications, 2011, 47, 9185.	2.2	146
40	Crystallographic studies into the role of exposed rare earth metal ion for guest sorption. CrystEngComm, 2011, 13, 5849.	1.3	22
41	A Porous Coordination Polymer Assembled from 8-Connected {Co ^{II} ₃ (OH)} Clusters and Isonicotinate: Multiple Active Metal Sites, Apical Ligand Substitution, H ₂ Adsorption, and Magnetism. Inorganic Chemistry, 2011, 50, 2321-2328.	1.9	101
42	A flexible metal azolate framework with drastic luminescence response toward solvent vapors and carbon dioxide. Chemical Science, 2011, 2, 2214.	3.7	117
43	Porous Coordination Polymer with Flexibility Imparted by Coordinatively Changeable Lithium Ions on the Pore Surface. Inorganic Chemistry, 2010, 49, 1158-1165.	1.9	54
44	Nonclassical Active Site for Enhanced Gas Sorption in Porous Coordination Polymer. Journal of the American Chemical Society, 2010, 132, 6654-6656.	6.6	300
45	Porous ionic/molecular crystal composed of highly symmetric magnetic clusters. Chemical Communications, 2010, 46, 246-248.	2.2	56
46	New Heterometallic Carboxylate Frameworks: Synthesis, Structure, Robustness, Flexibility, and Porosity. Inorganic Chemistry, 2009, 48, 7970-7976.	1.9	28
47	Isomeric Zinc(II) Triazolate Frameworks with 3-Connected Networks: Syntheses, Structures, and Sorption Properties. Inorganic Chemistry, 2009, 48, 3882-3889.	1.9	92
48	Strong Hydrogen Binding within a 3D Microporous Metalâ^'Organic Framework. Inorganic Chemistry, 2009, 48, 8656-8658.	1.9	76
49	Porous Manganese(II) 3-(2-Pyridyl)-5-(4-Pyridyl)-1,2,4-Triazolate Frameworks: Rational Self-Assembly, Supramolecular Isomerism, Solid-State Transformation, and Sorption Properties. Inorganic Chemistry, 2009, 48, 6652-6660.	1.9	83
50	Syntheses, structures and sorption properties of two framework-isomeric porous copper-coordination polymers. CrystEngComm, 2009, 11, 183-188.	1.3	68
51	3D geometrically frustrated magnets assembled by transition metal ion and 1,2,3-triazole-4,5-dicarboxylate as triangular nodes. CrystEngComm, 2008, 10, 1770.	1.3	65
52	In Situ Solvothermal Generation of 1,2,4-Triazolates and Related Compounds from Organonitrile and Hydrazine Hydrate:Â A Mechanism Study. Inorganic Chemistry, 2007, 46, 1135-1143.	1.9	143
53	Spin Canting and Topological Ferrimagnetism in Two Manganese(II) Coordination Polymers Generated by In Situ Solvothermal Ligand Reactions. European Journal of Inorganic Chemistry, 2007, 2007, 2668-2676.	1.0	51
54	Encapsulation of Water Cluster, meso-Helical Chain and Tapes in Metalâ^'Organic Frameworks Based on Double-Stranded Cd(II) Helicates and Carboxylates. Crystal Growth and Design, 2006, 6, 2739-2746.	1.4	91