
Mallikarjun Karadge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3888046/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Role of Extraneous Oxygen in the Formation of Oxide Inclusions in 316L Stainless Steel Manufactured byÂLaser Powder Bed Fusion. Conference Proceedings of the Society for Experimental Mechanics, 2021, , 75-80.	0.3	0
2	Evolution and Impact of Oxygen Inclusions in 316L Stainless Steel Manufactured by Laser Powder Bed Fusion. Conference Proceedings of the Society for Experimental Mechanics, 2021, , 81-86.	0.3	1
3	The origin and formation of oxygen inclusions in austenitic stainless steels manufactured by laser powder bed fusion. Additive Manufacturing, 2020, 35, 101334.	1.7	30
4	Crystal Plasticity Model for Nickel-Based Superalloy René 88DT at Elevated Temperature. Minerals, Metals and Materials Series, 2020, , 659-668.	0.3	0
5	Fatigue deformation in a polycrystalline nickel base superalloy at intermediate and high temperature: Competing failure modes. Acta Materialia, 2018, 152, 16-33.	3.8	107
6	Competing Modes for Crack Initiation from Non-metallic Inclusions and Intrinsic Microstructural Features During Fatigue in a Polycrystalline Nickel-Based Superalloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 3865-3873.	1.1	35
7	A Comprehensive Creep Model for Advanced 9-10% Cr Ferritic Steels. Procedia Engineering, 2013, 55, 727-734.	1.2	4
8	Damage mechanics-based creep model for 9–10%Cr ferritic steels. Acta Materialia, 2011, 59, 2145-2155.	3.8	65
9	Thermal Relaxation of Residual Stresses in Nickel-Based Superalloy Inertia Friction Welds. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 2301-2311.	1.1	21
10	Detailed Diffraction and Electron Microscopy Study of Inertia-Friction-Welded Dissimilar High-Strength Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3130-3140.	1.1	5
11	3-D observations of short fatigue crack interaction with la2mellar and duplex microstructures in a two-phase titanium alloy. Acta Materialia, 2011, 59, 1510-1522.	3.8	65
12	Inertia friction welds between nickel superalloy components: Analysis of residual stress by eigenstrain distributions. Journal of Strain Analysis for Engineering Design, 2009, 44, 159-170.	1.0	9
13	Effect of the forging pressure on the microstructure and residual stress development in Ti–6Al–4V linear friction welds. Acta Materialia, 2009, 57, 5582-5592.	3.8	128
14	Three-dimensional characterization of fatigue cracks in Ti-6246 using X-ray tomography and electron backscatter diffraction. Acta Materialia, 2009, 57, 5834-5847.	3.8	58
15	Importance of crystal orientation in linear friction joining of single crystal to polycrystalline nickel-based superalloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 491, 446-453.	2.6	86
16	Phase transformations across high strength dissimilar steel inertia friction weld. Journal of Materials Processing Technology, 2008, 204, 48-58.	3.1	25
17	Texture development in Ti–6Al–4V linear friction welds. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 459, 182-191.	2.6	117
18	Inertia Friction Welding Dissimilar Nickel-Based Superalloys Alloy 720Li to IN718. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 1608-1620.	1.1	68

#	Article	IF	CITATIONS
19	Microtexture of the thermally grown alumina in commercial thermal barrier coatings. Scripta Materialia, 2006, 54, 639-644.	2.6	54
20	Thermal and microstructural aspects of the laser direct metal deposition of waspaloy. Journal of Laser Applications, 2006, 18, 216-226.	0.8	39
21	Synergistic precipitation strengthening in TiAl alloys. Applied Physics Letters, 2006, 89, 181921.	1.5	17
22	Explaining microstructural and physical variations in rapid additive manufactured waspaloy parts through the laser-deposition thermal cycle. , 2005, , .		1
23	Metastable phase formation during α2(D019) to γ(L10) transformation in as-atomized γ-TiAl alloy powders. Applied Physics Letters, 2004, 85, 4914-4916.	1.5	9
24	Molybdenum and Tungsten Oxide Nanowires Prepared by Electrospinning. Materials Research Society Symposia Proceedings, 2004, 847, 513.	0.1	2
25	A structural aspect of α(α ₂) → lamellar α ₂ + γ transformation in Î Magazine Letters, 2004, 84, 451-459.	³ -TiAl. Phil 0.5	osophical
26	Oxidation Synthesized CuO Nanowires for Gas Sensing Applications. Microscopy and Microanalysis, 2004, 10, 360-361.	0.2	9
27	On the Mechanism of Fine Lamellar Structure Formation in \hat{I}^3 -TiAl Powders. Microscopy and Microanalysis, 2004, 10, 314-315.	0.2	0
28	Precipitation strengthening in K5-series γ-TiAl alloyed with silicon and carbon. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 2129-2138.	1.1	28
29	Effect of prior β processing on superplasticity of (α+β) thermo-mechanically treated Ti–632Si alloy. Journal of Materials Processing Technology, 2003, 134, 35-44.	3.1	18
30	Effect of priorÎ ² processing steps on microstructural refinement during thermomechanical processing of a two phase ($\hat{l}_{\pm} + \hat{l}^2$) titanium alloy. Materials Science and Technology, 2003, 19, 1688-1696.	0.8	3
31	In situ observation of carbide and silicide precipitation in C+Si alloyed γ-TiAl. Materials Letters, 2003, 57, 3581-3587.	1.3	24