Hong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3887836/publications.pdf

Version: 2024-02-01

623734 677142 24 965 14 22 citations g-index h-index papers 24 24 24 1197 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Multi-scale simulation of early kidney branching morphogenesis. Physical Biology, 2021, 18, 026005.	1.8	6
2	Optimized Hierarchical Structure and Chemical Gradients Promote the Biomechanical Functions of the Spike of Mantis Shrimps. ACS Applied Materials & Samp; Interfaces, 2021, 13, 17380-17391.	8.0	8
3	Multi-scale design of the chela of the hermit crab Coenobita brevimanus. Acta Biomaterialia, 2021, 127, 229-241.	8.3	5
4	Preliminary assessment of genotoxic effects induced by radiation from EAST using Vicia faba micronucleus assay. Journal of Radiological Protection, 2021, 41, 239-253.	1.1	0
5	Stimulation of biomass and astaxanthin accumulation in Haematococcus pluvialis using low-temperature plasma (LTP). Bioresource Technology Reports, 2020, 9, 100385.	2.7	8
6	Study of the toxicity of ZnO nanoparticles to <i>Chlorella sorokiniana</i> under the influence of phosphate: spectroscopic quantification, photosynthetic efficiency and gene expression analysis. Environmental Science: Nano, 2020, 7, 1431-1443.	4.3	12
7	Degradation of 2, 4-dichlorophenol in aqueous solution by dielectric barrier discharge: Effects of plasma-working gases, degradation pathways and toxicity assessment. Chemosphere, 2018, 204, 351-358.	8.2	52
8	Degradation of norfloxacin in aqueous solution by atmospheric-pressure non-thermal plasma: Mechanism and degradation pathways. Chemosphere, 2018, 210, 433-439.	8.2	81
9	Highly effective removal of malachite green from aqueous solution by hydrochar derived from phycocyanin-extracted algal bloom residues through hydrothermal carbonization. RSC Advances, 2017, 7, 5790-5799.	3.6	70
10	Spectroscopic probe to contribution of physicochemical transformations in the toxicity of aged ZnO NPs to $\langle i \rangle$ Chlorella vulgaris $\langle i \rangle$: new insight into the variation of toxicity of ZnO NPs under aging process. Nanotoxicology, 2016, 10, 1177-1187.	3.0	35
11	Distinguish the Role of DBD-Accompanying UV-Radiation in the Degradation of Bisphenol A. Plasma Chemistry and Plasma Processing, 2016, 36, 585-598.	2.4	13
12	New insight into the residual inactivation of Microcystis aeruginosa by dielectric barrier discharge. Scientific Reports, 2015, 5, 13683.	3. 3	20
13	Mutagenicity of ZnO nanoparticles in mammalian cells: Role of physicochemical transformations under the aging process. Nanotoxicology, 2015, 9, 972-982.	3.0	42
14	Harmful algae blooms removal from fresh water with modified vermiculite. Environmental Technology (United Kingdom), 2014, 35, 340-346.	2.2	22
15	SERS study of transformation of phenylalanine to tyrosine under particle irradiation. Journal of Molecular Structure, 2014, 1072, 195-202.	3. 6	12
16	Inactivation of Microcystis aeruginosa by DC glow discharge plasma: Impacts on cell integrity, pigment contents and microcystins degradation. Journal of Hazardous Materials, 2014, 268, 33-42.	12.4	55
17	Degradation of microcystin-LR in water by glow discharge plasma oxidation at the gas–solution interface and its safety evaluation. Water Research, 2012, 46, 6554-6562.	11.3	83
18	Reduction and Removal of Aqueous Cr(VI) by Glow Discharge Plasma at the Gas–Solution Interface. Environmental Science & Technology, 2011, 45, 7841-7847.	10.0	113

#	Article	IF	CITATION
19	Isolation, identification and characterization of phytoplankton-lytic bacterium CH-22 against Microcystis aeruginosa. Limnologica, 2011, 41, 70-77.	1.5	55
20	Flocculation of harmful algal blooms by modified attapulgite and its safety evaluation. Water Research, 2011, 45, 2855-2862.	11.3	44
21	Improved adsorptive capacity of pine wood decayed by fungi Poria cocos for removal of malachite green from aqueous solutions. Desalination, 2011, 274, 97-104.	8.2	61
22	Hexavalent chromium removal from aqueous solution by algal bloom residue derived activated carbon: Equilibrium and kinetic studies. Journal of Hazardous Materials, 2010, 181, 801-808.	12.4	153
23	Nano-networks have better adsorption capability than nano-rods. Nano Communication Networks, 2010, 1, 257-263.	2.9	14
24	Flocculation of Harmful Algal Blooms by Modified Fly Ash. Advanced Materials Research, 0, 347-353, 2090-2093.	0.3	1