Bhagavatula L V Prasad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3887143/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective electro-oxidation of phenol to 1,4-hydroquinone employing carbonaceous electrodes: surface modification is the key. New Journal of Chemistry, 2022, 46, 2518-2525.	2.8	4
2	Disordered but Efficient: Understanding the Role of Structure and Composition of the Co–Pt Alloy on the Electrocatalytic Methanol Oxidation Reaction. Journal of Physical Chemistry C, 2021, 125, 7611-7624.	3.1	7
3	Synthesis of anisotropic rod-like gold nanostructures in organic media. Journal of Chemical Sciences, 2021, 133, 1.	1.5	1
4	Lamellar Bimetallic Thiolates: Synthesis, Characterization, and Their Utilization for the Preparation of Bimetallic Chalcogenide Nanocrystals through Mechanochemical Grinding. Advanced Materials Interfaces, 2021, 8, 2100898.	3.7	3
5	Mechanistic Aspects of Methanol Electroâ€Oxidation Reaction through Cyclic Voltammetry: Is It Correct to Blame Carbon Monoxide for Catalyst Poisoning?. Energy Technology, 2020, 8, 1900955.	3.8	11
6	Development of a Smart Scaffold for Sequential Cancer Chemotherapy and Tissue Engineering. ACS Omega, 2020, 5, 20724-20733.	3.5	4
7	Unraveling the Role of Excess Ligand in Nanoparticle Pattern Formation from an Evaporatively Dewetting Nanofluid Droplet. Journal of Physical Chemistry C, 2020, 124, 23446-23453.	3.1	4
8	Mechanistic Aspects of Methanol Electroâ€Oxidation Reaction through Cyclic Voltammetry: Is It Correct to Blame Carbon Monoxide for Catalyst Poisoning?. Energy Technology, 2020, 8, 2070054.	3.8	1
9	Surface Modification of Polymers for Tissue Engineering Applications: Arginine Acts as a Sticky Protein Equivalent for Viable Cell Accommodation. ACS Omega, 2018, 3, 4242-4251.	3.5	23
10	pH- and Time-Resolved <i>in Situ</i> SAXS Study of Self-Assembled Twisted Ribbons Formed by Elaidic Acid Sophorolipids. Langmuir, 2018, 34, 2121-2131.	3.5	15
11	Generic and Scalable Method for the Preparation of Monodispersed Metal Sulfide Nanocrystals with Tunable Optical Properties. Langmuir, 2018, 34, 5788-5797.	3.5	12
12	Accelerated in vitro model for occlusion of biliary stents: investigating the role played by dietary fibre. BMJ Innovations, 2018, 4, 39-45.	1.7	0
13	Preparation of metal oxide supported catalysts and their utilization for understanding the effect of a support on the catalytic activity. New Journal of Chemistry, 2018, 42, 402-410.	2.8	17
14	Ligand–Solvent Compatibility: The Unsung Hero in the Digestive Ripening Story. Langmuir, 2018, 34, 13680-13689.	3.5	5
15	2D molecular precursor for a one-pot synthesis of semiconducting metal sulphide nanocrystals. Bulletin of Materials Science, 2018, 41, 1.	1.7	3
16	Solvent-Less Solid State Synthesis of Dispersible Metal and Semiconducting Metal Sulfide Nanocrystals. ACS Sustainable Chemistry and Engineering, 2018, 6, 12006-12016.	6.7	10
17	Wet chemical synthesis of metal oxide nanoparticles: a review. CrystEngComm, 2018, 20, 5091-5107.	2.6	296
18	Surface Modification of Polymeric Scaffolds for Tissue Engineering Applications. Regenerative Engineering and Translational Medicine, 2018, 4, 75-91.	2.9	18

Bhagavatula L V Prasad

#	Article	IF	CITATIONS
19	Digestive Ripening of Au Nanoparticles Using Multidentate Ligands. Langmuir, 2017, 33, 1943-1950.	3.5	20
20	Micelles versus Ribbons: How Congeners Drive the Selfâ€Assembly of Acidic Sophorolipid Biosurfactants. ChemPhysChem, 2017, 18, 643-652.	2.1	29
21	Amphi-functional mesoporous silica nanoparticles for dye separation. Journal of Materials Chemistry A, 2017, 5, 14914-14921.	10.3	33
22	Digestive Ripening: A Fine Chemical Machining Process on the Nanoscale. Langmuir, 2017, 33, 9491-9507.	3.5	96
23	Interfacialâ€Active Polymer Nanoparticles, Their Assemblies, and SERS Application. Macromolecular Chemistry and Physics, 2017, 218, 1700261.	2.2	9
24	Microwave-Assisted Batch and Continuous Flow Synthesis of Palladium Supported on Magnetic Nickel Nanocrystals and Their Evaluation as Reusable Catalyst. Crystal Growth and Design, 2017, 17, 5163-5169.	3.0	13
25	Nickel-catalyzed direct synthesis of dialkoxymethane ethers. Journal of Chemical Sciences, 2017, 129, 1153-1159.	1.5	1
26	Selfâ€Assembly of Bolaamphiphilic Molecules. Chemical Record, 2017, 17, 597-610.	5.8	34
27	<i>In situ</i> Electrochemical Transformation of Ni ₃ S ₂ and Ni ₃ S ₂ â€Ni from Sheets to Nanodisks: Towards Efficient Electrocatalysis for Hydrogen Evolution Reaction (HER). ChemistrySelect, 2016, 1, 6708-6712.	1.5	11
28	Bromide ion mediated modification to digestive ripening process: Preparation of ultra-small Pd, Pt, Rh and Ru nanoparticles. Nano Research, 2016, 9, 2007-2017.	10.4	18
29	Self-assembly of isomannide-based monoesters of C ₁₈ -fatty acids and their cellular uptake studies. RSC Advances, 2016, 6, 72074-72079.	3.6	4
30	Preparation of Ni ₃ S ₂ and Ni ₃ S ₂ –Ni Nanosheets via Solution Based Processes. Crystal Growth and Design, 2015, 15, 2584-2588.	3.0	6
31	Preparation of Ag(Shell)–Au(Core) nanoparticles by anti-Galvanic reactions: Are capping agents the "real heroes―of reduction?. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 478, 30-35.	4.7	6
32	A simple method for the preparation of ultra-small palladium nanoparticles and their utilization for the hydrogenation of terminal alkyne groups to alkanes. Nanoscale, 2015, 7, 872-876.	5.6	20
33	In situ synthesized BSA capped gold nanoparticles: Effective carrier of anticancer drug Methotrexate to MCF-7 breast cancer cells. Materials Science and Engineering C, 2014, 34, 158-167.	7.3	89
34	Vesicle Structures from Bolaamphiphilic Biosurfactants: Experimental and Molecular Dynamics Simulation Studies on the Effect of Unsaturation on Sophorolipid Self-Assemblies. Chemistry - A European Journal, 2014, 20, 6246-6250.	3.3	31
35	pH-Dependent Single-Step Rapid Synthesis of CuO and Cu ₂ O Nanoparticles from the Same Precursor. Crystal Growth and Design, 2014, 14, 4329-4334.	3.0	55
36	A nanocomposite of silver and thermo-associating polymer by a green route: a potential soft–hard material for controlled drug release. RSC Advances, 2014, 4, 10261.	3.6	21

#	Article	IF	CITATIONS
37	Time and Temperature Effects on the Digestive Ripening of Gold Nanoparticles: Is There a Crossover from Digestive Ripening to Ostwald Ripening?. Langmuir, 2014, 30, 10143-10150.	3.5	79
38	Chemistry of Materials Celebrates the 80th Birthday of One of the Premier "Chemists of Materials― Chemistry of Materials, 2014, 26, 3593-3594.	6.7	0
39	Dilution does the trick: Role of mixed solvent evaporation in controlling nanoparticle self-assembly. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 447, 142-147.	4.7	7
40	Microfluidic platform for continuous flow synthesis of triangular gold nanoplates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443, 149-155.	4.7	10
41	Ultrathin Sheets of Metal or Metal Sulfide from Molecularly Thin Sheets of Metal Thiolates in Solution. Chemistry of Materials, 2014, 26, 3436-3442.	6.7	23
42	Synthesis of triangular gold nanoplates: Role of bromide ion and temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 422, 181-190.	4.7	21
43	Surfactant-free synthesis of anisotropic gold nanostructures: can dicarboxylic acids alone act as shape directing agents?. RSC Advances, 2013, 3, 21641.	3.6	7
44	Synthesis of Ag-glyconanoparticles using C-glycosides, their lectin binding studies and antibacterial activity. New Journal of Chemistry, 2013, 37, 3716.	2.8	8
45	Development of a multifunctional catalyst for a "relay―reaction. RSC Advances, 2013, 3, 2186.	3.6	25
46	Fine control of nanoparticle sizes and size distributions: temperature and ligand effects on the digestive ripening process. Nanoscale, 2013, 5, 1768-1771.	5.6	41
47	Impinging Jet Micromixer for Flow Synthesis of Nanocrystalline MgO: Role of Mixing/Impingement Zone. Industrial & Engineering Chemistry Research, 2013, 52, 17376-17382.	3.7	32
48	Influence of the Sophorolipid Molecular Geometry on their Selfâ€Assembled Structures. Chemistry - an Asian Journal, 2013, 8, 369-372.	3.3	32
49	Effect of digestive ripening agent on nanoparticle size in the digestive ripening process. Chemical Physics Letters, 2012, 525-526, 101-104.	2.6	37
50	Many manifestations of digestive ripening: monodispersity, superlattices and nanomachining. New Journal of Chemistry, 2011, 35, 755-763.	2.8	55
51	Silver nanoparticle studded porous polyethylene scaffolds: bacteria struggle to grow on them while mammalian cells thrive. Nanoscale, 2011, 3, 2957.	5.6	35
52	Biocompatible gellan gumâ€reduced gold nanoparticles: cellular uptake and subacute oral toxicity studies. Journal of Applied Toxicology, 2011, 31, 411-420.	2.8	59
53	Nanogoldâ€Loaded Sharpâ€Edged Carbon Bullets as Plantâ€Gene Carriers. Advanced Functional Materials, 2010, 20, 2416-2423.	14.9	61
54	Melting Characteristics of Superlattices of Alkanethiol-Capped Gold Nanoparticles: The "Excluded― Story of Excess Thiol. Chemistry of Materials, 2010, 22, 1680-1685.	6.7	31

Bhagavatula L V Prasad

#	Article	IF	CITATIONS
55	â€~Clicking' molecular hooks on silica nanoparticles to immobilize catalytically important metal complexes: the case of gold catalyst immobilization. New Journal of Chemistry, 2010, 34, 2662.	2.8	25
56	Field dependence of the magnetocaloric effect in core-shell nanoparticles. Journal of Applied Physics, 2010, 107, .	2.5	58
57	Cytotoxic and genotoxic assessment of glycolipid-reduced and -capped gold and silver nanoparticles. New Journal of Chemistry, 2010, 34, 294-301.	2.8	87
58	Optical limiting properties of hydrophobic poly(etherimide) membranes embedded with isolated and aggregated gold nanostructures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 352, 79-83.	4.7	7
59	Preparation of Nearly Monodisperse Nickel Nanoparticles by a Facile Solution Based Methodology and Their Ordered Assemblies. Journal of Physical Chemistry C, 2009, 113, 3426-3429.	3.1	54
60	A direct method for the preparation of glycolipid–metal nanoparticle conjugates: sophorolipids as reducing and capping agents for the synthesis of water re-dispersible silver nanoparticles and their antibacterial activity. New Journal of Chemistry, 2009, 33, 646-652.	2.8	113
61	Composites of plasma treated poly(etherimide) films with gold nanoparticles and lysine through layer by layer assembly: a "friendly-rough―surface for cell adhesion and proliferation for tissue engineering applications. Journal of Materials Chemistry, 2009, 19, 544-550.	6.7	13
62	Synthesis of silver nanoparticles by sophorolipids: Effect of temperature and sophorolipid structure on the size of particles. Journal of Chemical Sciences, 2008, 120, 515-520.	1.5	103
63	Natural Gum Reduced/Stabilized Gold Nanoparticles for Drug Delivery Formulations. Chemistry - A European Journal, 2008, 14, 10244-10250.	3.3	203
64	Carbon nano horn and bovine serum albumin hierarchical composite: towards bio-friendly superhydrophobic protein film surfaces. Journal of Materials Chemistry, 2008, 18, 3422.	6.7	5
65	Gold nanoparticle superlattices. Chemical Society Reviews, 2008, 37, 1871.	38.1	190
66	Bacterial synthesis of silicon/silica nanocomposites. Journal of Materials Chemistry, 2008, 18, 2601.	6.7	57
67	Multiutility Sophorolipids as Nanoparticle Capping Agents:  Synthesis of Stable and Water Dispersible Co Nanoparticles. Langmuir, 2007, 23, 11409-11412.	3.5	82
68	Effect of halogen addition to monolayer protected gold nanoparticles. Journal of Materials Chemistry, 2007, 17, 1614.	6.7	46
69	Nearly Complete Oxidation of Au° in Hydrophobized Nanoparticles to Au ³⁺ Ions by <i>N</i> -Bromosuccinimide. Journal of Physical Chemistry C, 2007, 111, 14348-14352.	3.1	20
70	Reversible Transformations of Gold Nanoparticle Morphology. Langmuir, 2005, 21, 10280-10283.	3.5	70
71	Solvent-Adaptable Silver Nanoparticles. Langmuir, 2005, 21, 822-826.	3.5	48
72	Synthesis of gold, silver and their alloy nanoparticles using bovine serum albumin as foaming and stabilizing agent. Journal of Materials Chemistry, 2005, 15, 5115.	6.7	168

#	Article	IF	CITATIONS
73	Foam-based synthesis of cobalt nanoparticles and their subsequent conversion to CocoreAgshell nanoparticles by a simple transmetallation reaction. Journal of Materials Chemistry, 2004, 14, 1057.	6.7	61
74	A facile liquid foam based synthesis of nickel nanoparticles and their subsequent conversion to NicoreAgshell particles: structural characterization and investigation of magnetic properties. Journal of Materials Chemistry, 2004, 14, 2941.	6.7	65
75	Digestive-Ripening Agents for Gold Nanoparticles:Â Alternatives to Thiols. Chemistry of Materials, 2003, 15, 935-942.	6.7	297
76	Cold Nanoparticles as Catalysts for Polymerization of Alkylsilanes to Siloxane Nanowires, Filaments, and Tubes. Journal of the American Chemical Society, 2003, 125, 10488-10489.	13.7	95
77	Face-Centered Cubic and Hexagonal Closed-Packed Nanocrystal Superlattices of Gold Nanoparticles Prepared by Different Methodsâ€. Journal of Physical Chemistry B, 2003, 107, 7441-7448.	2.6	225
78	Digestive Ripening of Thiolated Gold Nanoparticles:Â The Effect of Alkyl Chain Length. Langmuir, 2002, 18, 7515-7520.	3.5	283
79	Amphifunctional Mesoporous Silica Nanoparticles with "Molecular Gatesâ€for Controlled Drug Untake and Release, Particle and Particle Systems Characterization, 0 _ 2100185	2.3	2