Muhammad Bilal Shakoor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3887116/publications.pdf

Version: 2024-02-01

44 papers 3,566 citations

218677 26 h-index 276875 41 g-index

44 all docs 44 docs citations

44 times ranked

3303 citing authors

#	Article	lF	CITATIONS
1	Green and eco-friendly synthesis of TiO ₂ nanoparticles and their application for removal of cadmium from wastewater: reaction kinetics study. Zeitschrift Fur Physikalische Chemie, 2022, 236, 637-657.	2.8	12
2	Synthesis and Application of Egg Shell Biochar for As(V) Removal from Aqueous Solutions. Catalysts, 2022, 12, 431.	3.5	9
3	Microwave Irradiation and Glutamic Acid-Assisted Phytotreatment of Textile and Surgical Industrial Wastewater by Sorghum. Molecules, 2022, 27, 4004.	3.8	3
4	Developments in Nanoadsorbents for the Treatment of Arsenic-Contaminated Water., 2021,, 325-361.		2
5	Selective Removal of Hexavalent Chromium from Wastewater by Rice Husk: Kinetic, Isotherm and Spectroscopic Investigation. Water (Switzerland), 2021, 13, 263.	2.7	32
6	Investigation of Lithium Application and Effect of Organic Matter on Soil Health. Sustainability, 2021, 13, 1705.	3.2	15
7	Synthesis and characterization of a novel single-phase sputtered Cu2O thin films: Structural, antibacterial activity and photocatalytic degradation of methylene blue. Inorganic Chemistry Communication, 2021, 128, 108606.	3.9	20
8	Engineered biochars for recovering phosphate and ammonium from wastewater: A review. Science of the Total Environment, 2021, 779, 146240.	8.0	77
9	Quantitative Estimation of the Hydroquinone, Mercury and Total Plate Count in Skin-Lightening Creams. Sustainability, 2021, 13, 8786.	3.2	7
10	Effective Removal of Cr(VI) from Wastewater Using Biochar Derived from Walnut Shell. International Journal of Environmental Research and Public Health, 2021, 18, 9670.	2.6	19
11	Efficacy of Lemna minor and Typha latifolia for the treatment of textile industry wastewater in a constructed wetland under citric acid amendment: A lab scale study. Chemosphere, 2021, 283, 131107.	8.2	7
12	Enhanced Solar Photocatalytic Reduction of Cr(VI) Using a (ZnO/CuO) Nanocomposite Grafted onto a Polyester Membrane for Wastewater Treatment. Polymers, 2021, 13, 4047.	4.5	14
13	High sorption efficiency for As(III) and As(V) from aqueous solutions using novel almond shell biochar. Chemosphere, 2020, 243, 125330.	8.2	81
14	A review of biochar-based sorbents for separation of heavy metals from water. International Journal of Phytoremediation, 2020, 22, 111-126.	3.1	110
15	Biomass for renewable energy production in Pakistan: current state and prospects. Arabian Journal of Geosciences, 2020, 13, 1.	1.3	17
16	Adsorption-reduction performance of tea waste and rice husk biochars for Cr(VI) elimination from wastewater. Journal of Saudi Chemical Society, 2020, 24, 799-810.	5.2	66
17	Comparative evaluation of wheat straw and press mud biochars for Cr(VI) elimination from contaminated aqueous solution. Environmental Technology and Innovation, 2020, 19, 101017.	6.1	18
18	A critical review on arsenic removal from water using biochar-based sorbents: The significance of modification and redox reactions. Chemical Engineering Journal, 2020, 396, 125195.	12.7	243

#	Article	IF	CITATIONS
19	Bacterial Augmented Floating Treatment Wetlands for Efficient Treatment of Synthetic Textile Dye Wastewater. Sustainability, 2020, 12, 3731.	3.2	29
20	Biogeochemical cycling, speciation and transformation pathways of arsenic in aquatic environments with the emphasis on algae. Comprehensive Analytical Chemistry, 2019, 85, 15-51.	1.3	21
21	Comparative efficiency of peanut shell and peanut shell biochar for removal of arsenic from water. Environmental Science and Pollution Research, 2019, 26, 18624-18635.	5.3	69
22	Synthesis and Application of Titanium Dioxide Nanoparticles for Removal of Cadmium from Wastewater: Kinetic and Equilibrium Study. Water, Air, and Soil Pollution, 2019, 230, 1.	2.4	36
23	Recent Advances in Arsenic Accumulation in Rice. , 2019, , 385-398.		10
24	Exploring the arsenic removal potential of various biosorbents from water. Environment International, 2019, 123, 567-579.	10.0	130
25	The evaluation of arsenic contamination potential, speciation and hydrogeochemical behaviour in aquifers of Punjab, Pakistan. Chemosphere, 2018, 199, 737-746.	8.2	119
26	Tea waste as a potential biowaste for removal of hexavalent chromium from wastewater: equilibrium and kinetic studies. Arabian Journal of Geosciences, 2018, 11, 1.	1.3	27
27	Arsenic removal by natural and chemically modified water melon rind in aqueous solutions and groundwater. Science of the Total Environment, 2018, 645, 1444-1455.	8.0	96
28	A comprehensive study on the surface chemistry of particulate matter collected from Jeddah, Saudi Arabia. Journal of Atmospheric Chemistry, 2018, 75, 271-283.	3.2	2
29	Phosphate-assisted phytoremediation of arsenic by <i>Brassica napus</i> and <i>Brassica juncea</i> : Morphological and physiological response. International Journal of Phytoremediation, 2017, 19, 670-678.	3.1	112
30	Human health risk assessment of arsenic in groundwater aquifers of Lahore, Pakistan. Human and Ecological Risk Assessment (HERA), 2017, 23, 836-850.	3.4	67
31	Human health implications, risk assessment and remediation of As-contaminated water: A critical review. Science of the Total Environment, 2017, 601-602, 756-769.	8.0	170
32	Foliar application of aspartic acid lowers cadmium uptake and Cd-induced oxidative stress in rice under Cd stress. Environmental Science and Pollution Research, 2017, 24, 21938-21947.	5.3	65
33	Effect of zinc-lysine on growth, yield and cadmium uptake in wheat (Triticum aestivum L.) and health risk assessment. Chemosphere, 2017, 187, 35-42.	8.2	175
34	Groundwater status in Pakistan: A review of contamination, health risks, and potential needs. Critical Reviews in Environmental Science and Technology, 2017, 47, 1713-1762.	12.8	84
35	Drinking Water Quality Status and Contamination in Pakistan. BioMed Research International, 2017, 2017, 1-18.	1.9	245
36	Phytoremediation of Arsenic-Contaminated Soils Using Arsenic Hyperaccumulating Ferns. , 2016, , 521-545.		10

#	Article	IF	CITATIONS
37	Remediation of arsenic-contaminated water using agricultural wastes as biosorbents. Critical Reviews in Environmental Science and Technology, 2016, 46, 467-499.	12.8	161
38	Silicon alleviates nickel toxicity in cotton seedlings through enhancing growth, photosynthesis, and suppressing Ni uptake and oxidative stress. Archives of Agronomy and Soil Science, 2016, 62, 633-647.	2.6	95
39	Unraveling Health Risk and Speciation of Arsenic from Groundwater in Rural Areas of Punjab, Pakistan. International Journal of Environmental Research and Public Health, 2015, 12, 12371-12390.	2.6	157
40	Citric acid assisted phytoremediation of copper by Brassica napus L Ecotoxicology and Environmental Safety, 2015, 120, 310-317.	6.0	191
41	EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L Environmental Science and Pollution Research, 2015, 22, 1534-1544.	5.3	217
42	EDTA ameliorates phytoextraction of lead and plant growth by reducing morphological and biochemical injuries in Brassica napus L. under lead stress. Environmental Science and Pollution Research, 2014, 21, 9899-9910.	5.3	79
43	Citric acid improves lead (pb) phytoextraction in brassica napus L. by mitigating pb-induced morphological and biochemical damages. Ecotoxicology and Environmental Safety, 2014, 109, 38-47.	6.0	145
44	Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicology and Environmental Safety, 2014, 106, 164-172.	6.0	302