Bao-Xia Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3887064/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Well-dispersed porous Fe–N–C catalyst towards the high-selective and high-efficiency conversion of CO2 to CO. Chinese Chemical Letters, 2023, 34, 107273.	4.8	3
2	The boosting of electrocatalytic CO2-to-CO transformation by using the carbon nanotubes-supported PCN-222(Fe) nanoparticles composite. Journal of Materials Science, 2022, 57, 526-537.	1.7	9
3	Atomically dispersed Fe–N–C catalyst displaying ultra-high stability and recyclability for efficient electroreduction of CO ₂ to CO. Chemical Communications, 2022, 58, 2512-2515.	2.2	10
4	Alkaline Earth Metal-Induced Hydrogenation of the CaO-Captured CO ₂ to Methane at Room Temperature. Industrial & Engineering Chemistry Research, 2022, 61, 10124-10132.	1.8	4
5	One-pot preparation of H2-mixed CH4 fuel and CaO-based CO2 sorbent by the hydrogenation of waste clamshell/eggshell at room temperature. Journal of Environmental Management, 2022, 319, 115617.	3.8	2
6	Nitrogen-rich metal-organic framework mediated Cu–N–C composite catalysts for the electrochemical reduction of CO2. Journal of Energy Chemistry, 2021, 54, 555-563.	7.1	36
7	Iron-doping on Cu–N–C composite with enhanced CO faraday efficiency for the electrochemical reduction of CO2. Journal of CO2 Utilization, 2021, 44, 101418.	3.3	9
8	Storage and in-situ preparation of H2-mixed CH4 fuel by thermochemical reduction of inorganic carbonates with activated metal hydrides. Fuel, 2021, 292, 120395.	3.4	9
9	One-step and sustainable preparations of inert additive-doped CaO-based CO2 adsorbents by hydrogenation reduction of CaCO3. Chemical Engineering Journal, 2021, 418, 129479.	6.6	10
10	A new inorganic-organic hybrid compound based on Keggin and 4.4′-bis(1,2,4-triazol-1-ylmethyl)biphenyl: Crystal structure and electrocatalytic performance. Journal of Molecular Structure, 2021, 1239, 130490.	1.8	6
11	Impact of grain size and reactant ratio on reduction of CO2 to CH4 by alkali metal hydride. Green Materials, 2021, 9, 120-130.	1.1	0
12	A new É>-Keggin polyoxometalate-based metal-organic framework: From design and synthesis to electrochemical hydrogen evolution. Catalysis Communications, 2021, 161, 106367.	1.6	16
13	Cyclic reaction-induced enhancement in the dehydrogenation performances of the KNH2-doped LiNH2 and LiH system. International Journal of Hydrogen Energy, 2020, 45, 25927-25934.	3.8	9
14	Revealing the structure–activity relationship of two Cu-porphyrin-based metal–organic frameworks for the electrochemical CO ₂ -to-HCOOH transformation. Dalton Transactions, 2020, 49, 14995-15001.	1.6	28
15	Calix[8]arene-constructed stable polyoxo-titanium clusters for efficient CO ₂ photoreduction. Green Chemistry, 2020, 22, 5325-5332.	4.6	40
16	Thermal Reduction of CO ₂ with Activated Alkali Metal Aluminum Hydrides for Selective Methanation. Energy & Fuels, 2020, 34, 11210-11218.	2.5	4
17	Metal carbonates-induced solution-free dehydrogenation of alkaline earth metal hydrides at room temperature. Journal of Solid State Chemistry, 2020, 289, 121485.	1.4	1
18	Acquiring an effective CaO-based CO ₂ sorbent and achieving selective methanation of CO ₂ . RSC Advances, 2020, 10, 21509-21516.	1.7	8

BAO-XIA DONG

#	Article	IF	CITATIONS
19	Polyoxometalateâ€Based Compounds for Photo―and Electrocatalytic Applications. Angewandte Chemie, 2020, 132, 20963-20977.	1.6	38
20	Polyoxometalateâ€Based Compounds for Photo―and Electrocatalytic Applications. Angewandte Chemie - International Edition, 2020, 59, 20779-20793.	7.2	222
21	Construction of a new three-dimensional fluorescent probe based on Ball ions and 2,5-bis-(4-carboxy-phenylsulfanyl)-terephthalic acid. Journal of Solid State Chemistry, 2019, 278, 120897.	1.4	5
22	Selfâ€Assembly of a Phosphateâ€Centered Polyoxoâ€Titanium Cluster: Discovery of the Heteroatom Keggin Family. Angewandte Chemie, 2019, 131, 17420-17424.	1.6	10
23	Selfâ€Assembly of a Phosphateâ€Centered Polyoxoâ€Titanium Cluster: Discovery of the Heteroatom Keggin Family. Angewandte Chemie - International Edition, 2019, 58, 17260-17264.	7.2	71
24	An adjustable dual-emission fluorescent metal-organic framework: Effective detection of multiple metal ions, nitro-based molecules and DMA. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 223, 117283.	2.0	27
25	Efficiently generating COx-free hydrogen by mechanochemical reaction between alkali hydrides and carbon dioxide. International Journal of Hydrogen Energy, 2019, 44, 18159-18168.	3.8	6
26	Fabrication of a water-stable luminescent MOF with an open Lewis basic triazolyl group for the high-performance sensing of acetone and Fe3+ ions. Journal of Materials Science, 2019, 54, 10644-10655.	1.7	40
27	Electrochemical oxygen evolution reaction efficiently catalyzed by a novel porous iron-cobalt-fluoride nanocube easily derived from 3-dimensional Prussian blue analogue. Journal of Power Sources, 2019, 424, 131-137.	4.0	79
28	Highly Selective and Efficient Reduction of CO ₂ to Methane by Activated Alkaline Earth Metal Hydrides without a Catalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 4831-4841.	3.2	17
29	Highly Selective Roomâ€Temperature Catalystâ€Free Reduction of Alkaline Carbonates to Methane by Metal Hydrides. Energy Technology, 2019, 7, 1800719.	1.8	11
30	Highly sensitive and recyclable sensing of Fe3+ ions based on a luminescent anionic [Cd(DMIPA)]2- framework with exposed thioether group in the snowflake-like channels. Journal of Solid State Chemistry, 2019, 270, 493-499.	1.4	31
31	Dehydrogenation reactions of mechanically activated alkali metal hydrides with CO2 at room temperature. International Journal of Hydrogen Energy, 2018, 43, 5068-5076.	3.8	9
32	The effect of KH on enhancing the dehydrogenation properties of the Li–N–H system and its catalytic mechanism. Physical Chemistry Chemical Physics, 2018, 20, 11116-11122.	1.3	9
33	An Ultrastable Luminescent Metal–Organic Framework for Selective Sensing of Nitroaromatic Compounds and Nitroimidazole-Based Drug Molecules. Crystal Growth and Design, 2018, 18, 431-440.	1.4	115
34	Electrochemical Reduction of CO ₂ to CO by a Heterogeneous Catalyst of Fe–Porphyrin-Based Metal–Organic Framework. ACS Applied Energy Materials, 2018, 1, 4662-4669.	2.5	123
35	Superior effect of RbF on decreasing the dehydrogenation operating temperature of the LiNH2LiH system. Journal of Alloys and Compounds, 2017, 697, 62-67.	2.8	10
36	Synthesis, characterization, and crystal structure of a 3D coordination polymer [Cd2·(H3C9N12)·Cl·(H2O)2]. Inorganic and Nano-Metal Chemistry, 2017, 47, 549-552.	0.9	1

BAO-XIA DONG

#	Article	IF	CITATIONS
37	Synergetic effects of K, Ti and F on the hydrogen storage properties of the Li N H system. International Journal of Hydrogen Energy, 2017, 42, 17149-17156.	3.8	5
38	Synthesis, structure and luminescent properties of halogenated isophthalic acid-directed frameworks in virtue of flexible and semiflexible N-containing ligands. Journal of Molecular Structure, 2017, 1139, 202-208.	1.8	0
39	Construction of (3,4)-Connected Polyoxometalate-Based Metal–Organic Frameworks (POMOFs) from Triangular Carboxylate and Tetrahedral Zn ₄ -ε-Keggin. Crystal Growth and Design, 2017, 17, 5309-5317.	1.4	43
40	Construction of (3,6)-connected polyoxometalate-based metal–organic frameworks (POMOFs) from triangular carboxylate and dimerized Zn ₄ -ε-Keggin. Dalton Transactions, 2017, 46, 14286-14292.	1.6	17
41	Mechanochemical synthesis of COx-free hydrogen and methane fuel mixtures at room temperature from light metal hydrides and carbon dioxide. Applied Energy, 2017, 204, 741-748.	5.1	17
42	Effects of MWCNTs on improving the hydrogen storage performance of the Li3N system. International Journal of Hydrogen Energy, 2017, 42, 987-995.	3.8	6
43	Effect of alkali metal amides on the improvement of dehydrogenation for the LiH–NH3 system. Journal of Materials Science, 2016, 51, 911-916.	1.7	7
44	Diverse CdII coordination complexes derived from bromide isophthalic acid binding with auxiliary N-donor ligands. Journal of Solid State Chemistry, 2016, 244, 12-19.	1.4	4
45	Thermochemical Reduction of Carbon Dioxide with Alkali Metal Hydrides, Producing Methane and Hydrogen Fuels at Moderate Temperatures. Energy & Fuels, 2016, 30, 6620-6625.	2.5	18
46	Improved electrolysis of liquid ammonia for hydrogen generation via ammonium salt electrolyte and Pt/Rh/Ir electrocatalysts. International Journal of Hydrogen Energy, 2016, 41, 14507-14518.	3.8	31
47	Solvent- and Temperature-Induced Multiple Crystal Phases: Crystal Structure, Selective Adsorption, and Separation of Organic Dye in Three S-Containing {[Cd(MIPA)] _{<i>n</i>} } ^{<i>n</i>?} Homologues. Crystal Growth and Design, 2016, 16, 6363-6370.	1.4	29
48	Hydrogen desorption improvement of the LiNH2–LiH–KF composite. International Journal of Hydrogen Energy, 2016, 41, 16122-16128.	3.8	12
49	A novel hydrogen storage system of KLi3(NH2)4-4LiH with superior cycling stability. International Journal of Hydrogen Energy, 2016, 41, 5371-5377.	3.8	16
50	Synthesis, Crystal Structure and Electrochemical Properties of A New 2D Network Containing Linear {͵-H2PMo 8 V Mo 4 VI O40Zn4}â^ž Inorganic Chain. Journal of Cluster Science, 2016, 27, 361-371.	1.7	10
51	Improved dehydrogenation properties of the LiNH ₂ –LiH system by doping with alkali metal hydroxide. Journal of Materials Chemistry A, 2015, 3, 905-911.	5.2	29
52	Gas storage and separation in a water-stable [Cu ^I ₅ BTT ₃] ^{4â^'} anion framework comprising a giant multi-prismatic nanoscale cage. Chemical Communications, 2015, 51, 5691-5694.	2.2	44
53	A New 2D Network Constructed from the Extension of Transition-Metal-Grafted Îμ-Keggin Polyoxoanion by a Bridging Organic Carboxylate. Journal of Cluster Science, 2015, 26, 1595-1605.	1.7	14
54	The first tritopic bridging ligand 1,3,5-tris(4-carboxyphenyl)-benzene (H ₃ BTB) functionalized porous polyoxometalate-based metal–organic framework (POMOF): from design, synthesis to electrocatalytic properties. Dalton Transactions, 2015, 44, 1435-1440.	1.6	55

BAO-XIA DONG

#	ARTICLE	IF	CITATIONS
55	Enhanced hydrogen desorption reaction kinetics by optimizing the reaction conditions and doping potassium compounds in the LiH–NH3 system. International Journal of Hydrogen Energy, 2014, 39, 13838-13843.	3.8	16
56	The ternary amide KLi3(NH2)4: an important intermediate in the potassium compound-added Li–N–H systems. RSC Advances, 2014, 4, 10702-10707.	1.7	13
57	The interesting and superior hydrogenation properties of potassium-doped LiNH2 and its ternary mixed-cationic amide. RSC Advances, 2013, 3, 16977.	1.7	7
58	Spontaneous resolution of 3D chiral hexadecavanadate-based frameworks incorporating achiral flexible and rigid ligands. CrystEngComm, 2013, 15, 2783-2785.	1.3	22
59	Liquid ammonia electrolysis by platinum electrodes. Journal of Alloys and Compounds, 2011, 509, S891-S894.	2.8	19
60	Solvent effect on the construction of two microporous yttrium–organic frameworks with high thermostability viain situ ligand hydrolysis. Dalton Transactions, 2010, 39, 5683.	1.6	38
61	Structural Investigation of Flexible 1,4-Bis(1,2,4-triazol-1-ylmethyl)benzene Ligand in Keggin-Based Polyoxometalate Frameworks. Crystal Growth and Design, 2009, 9, 2776-2782.	1.4	78
62	Investigation of Flexible Organic Ligands in the Molybdate System: Delicate Influence of a Peripheral Cluster Environment on the Isopolymolybdate Frameworks. Inorganic Chemistry, 2009, 48, 5861-5873.	1.9	69
63	A novel wavelike chain constructed from Wells–Dawson type polyoxoanions and mixed-ligand decorated transition metal complex cations [Ni(phen)(bbi)2]2+. Journal of Molecular Structure, 2008, 875, 75-79.	1.8	15
64	A novel inorganic-organic hybrid based on a Wells–Dawson polyanion containing two types of organic fragments. Journal of Coordination Chemistry, 2007, 60, 1645-1654.	0.8	7
65	High-Dimensional Assembly Depending on Polyoxoanion Templates, Metal Ion Coordination Geometries, and a Flexible Bis(imidazole) Ligand. Inorganic Chemistry, 2007, 46, 5933-5941.	1.9	171
66	Hydrothermal synthesis and crystal structure of a novel Keggin polyoxoanion-templated multichain coordination polymer with a flexible bis(imidazole) ligand. Inorganic Chemistry Communication, 2007, 10, 839-842.	1.8	16
67	Two new inorganic–organic hybrid single pendant hexadecavanadate derivatives with bifunctional electrocatalytic activities. Electrochimica Acta, 2007, 52, 3804-3812.	2.6	38
68	Syntheses, structures and physical characterization of two new three-dimensional mixed-valence hexadecavanadate derivatives. Journal of Molecular Structure, 2007, 827, 50-55.	1.8	15
69	pH-controlled assembly of two polyoxovanadates based on [V16O38(Cl)]8â^' and [V15O36(Cl)]6â^' building blocks. Journal of Molecular Structure, 2006, 788, 200-205.	1.8	20
70	Hydrothermal synthesis and crystal structure of a new mixed-valence mesostructured hexadecavanadate. Journal of Molecular Structure, 2005, 748, 171-176.	1.8	12
71	Synthesis, Structure, and Electrocatalysis of a Novel Compound Based on [β-Mo8O26]4â~ Cluster and [NiN4O2]2+ Secondary Building Unit. Journal of Cluster Science, 0, , 1.	1.7	1