G R Scott Budinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3886870/publications.pdf

Version: 2024-02-01

38300 53660 10,338 102 45 95 citations h-index g-index papers 119 119 119 17103 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Outcomes after extracorporeal membrane oxygenation support in COVIDâ€19 and nonâ€COVIDâ€19 patients. Artificial Organs, 2022, 46, 688-696.	1.0	29
2	Clinical Characteristics and Outcomes of Patients With COVID-19–Associated Acute Respiratory Distress Syndrome Who Underwent Lung Transplant. JAMA - Journal of the American Medical Association, 2022, 327, 652.	3.8	64
3	Lung Injury Induces Alveolar Type 2 Cell Hypertrophy and Polyploidy with Implications for Repair and Regeneration. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 564-576.	1.4	14
4	Reduced expression of mitochondrial complex I subunit Ndufs2 does not impact healthspan in mice. Scientific Reports, 2022, 12, 5196.	1.6	10
5	Local and systemic responses to SARS-CoV-2 infection in children and adults. Nature, 2022, 602, 321-327.	13.7	179
6	Characteristics and Outcomes of Patients With COVID-19–Associated ARDS Who Underwent Lung Transplant—Reply. JAMA - Journal of the American Medical Association, 2022, 327, 2454.	3.8	2
7	CD11b suppresses TLR activation of nonclassical monocytes to reduce primary graft dysfunction after lung transplantation. Journal of Clinical Investigation, 2022, 132, .	3.9	11
8	The lung microenvironment shapes a dysfunctional response of alveolar macrophages in aging. Journal of Clinical Investigation, 2021, 131, .	3.9	86
9	The proteostatic network chaperome is downregulated in F508del homozygote cystic fibrosis. Journal of Cystic Fibrosis, 2021, 20, 356-363.	0.3	2
10	Crosstalk between nonclassical monocytes and alveolar macrophages mediates transplant ischemia-reperfusion injury through classical monocyte recruitment. JCI Insight, 2021, 6, .	2.3	34
11	Nonclassical Monocytes Promote Edema in Lung Allografts from Traumatic Brain Injury Donors. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 391-394.	1.4	1
12	Early outcomes after lung transplantation for severe COVID-19: a series of the first consecutive cases from four countries. Lancet Respiratory Medicine, the, 2021, 9, 487-497.	5.2	175
13	Resetting proteostasis with ISRIB promotes epithelial differentiation to attenuate pulmonary fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	36
14	SIRT3 Overexpression Ameliorates Asbestos-Induced Pulmonary Fibrosis, mt-DNA Damage, and Lung Fibrogenic Monocyte Recruitment. International Journal of Molecular Sciences, 2021, 22, 6856.	1.8	22
15	Distinctive features of severe SARS-CoV-2 pneumonia. Journal of Clinical Investigation, 2021, 131, .	3.9	49
16	Lung donation following SARS-CoV-2 infection. American Journal of Transplantation, 2021, 21, 4073-4078.	2.6	15
17	Bacterial Superinfection Pneumonia in Patients Mechanically Ventilated for COVID-19 Pneumonia. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 921-932.	2.5	108
18	Circuits between infected macrophages and T cells in SARS-CoV-2 pneumonia. Nature, 2021, 590, 635-641.	13.7	524

#	Article	IF	Citations
19	miR-221-5p-Mediated Downregulation of JNK2 Aggravates Acute Lung Injury. Frontiers in Immunology, 2021, 12, 700933.	2.2	8
20	A spatially restricted fibrotic niche in pulmonary fibrosis is sustained by M-CSF/M-CSFR signalling in monocyte-derived alveolar macrophages. European Respiratory Journal, 2020, 55, 1900646.	3.1	188
21	Lung transplantation for patients with severe COVID-19. Science Translational Medicine, 2020, 12, .	5.8	246
22	The Sphingosine Kinase 1 Inhibitor, PF543, Mitigates Pulmonary Fibrosis by Reducing Lung Epithelial Cell mtDNA Damage and Recruitment of Fibrogenic Monocytes. International Journal of Molecular Sciences, 2020, 21, 5595.	1.8	16
23	Impaired phagocytic function in CX3CR1 ⁺ tissueâ€resident skeletal muscle macrophages prevents muscle recovery after influenza A virusâ€induced pneumonia in old mice. Aging Cell, 2020, 19, e13180.	3.0	21
24	Thoracoscopic lung biopsy under regional anesthesia for interstitial lung disease. Regional Anesthesia and Pain Medicine, 2020, 45, 255-259.	1.1	7
25	Epithelial cell–specific loss of function of <i>Miz1</i> causes a spontaneous COPD-like phenotype and up-regulates <i>Ace2</i> expression in mice. Science Advances, 2020, 6, eabb7238.	4.7	16
26	Hypercapnia Suppresses Macrophage Antiviral Activity and Increases Mortality of Influenza A Infection via Akt1. Journal of Immunology, 2020, 205, 489-501.	0.4	18
27	Feasibility of Venovenous Extracorporeal Membrane Oxygenation Without Systemic Anticoagulation. Annals of Thoracic Surgery, 2020, 110, 1209-1215.	0.7	79
28	Mitochondrial ubiquinol oxidation is necessary for tumour growth. Nature, 2020, 585, 288-292.	13.7	205
29	Breathing fresh air into respiratory research with single-cell RNA sequencing. European Respiratory Review, 2020, 29, 200060.	3.0	11
30	High CO ₂ Levels Impair Lung Wound Healing. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 244-254.	1.4	17
31	Linear ubiquitin assembly complex regulates lung epithelial–driven responses during influenza infection. Journal of Clinical Investigation, 2020, 130, 1301-1314.	3.9	20
32	Residual endotoxin induces primary graft dysfunction through ischemia-reperfusion-primed alveolar macrophages. Journal of Clinical Investigation, 2020, 130, 4456-4469.	3.9	13
33	The Human Lung Cell Atlas: A High-Resolution Reference Map of the Human Lung in Health and Disease. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 31-41.	1.4	178
34	Elevated CO2 regulates the Wnt signaling pathway in mammals, Drosophila melanogaster and Caenorhabditis elegans. Scientific Reports, 2019, 9, 18251.	1.6	24
35	Single-Cell Transcriptomic Analysis of Human Lung Provides Insights into the Pathobiology of Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1517-1536.	2.5	866
36	Gut Microbiota Can Impact Chronic Murine Lung Allograft Rejection. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 131-134.	1.4	15

#	Article	IF	Citations
37	Multidimensional Assessment of the Host Response in Mechanically Ventilated Patients with Suspected Pneumonia. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1225-1237.	2.5	32
38	Influenza A Virus Infection Induces Muscle Wasting via IL-6 Regulation of the E3 Ubiquitin Ligase Atrogin-1. Journal of Immunology, 2019, 202, 484-493.	0.4	35
39	Metformin Targets Mitochondrial Electron Transport to Reduce Air-Pollution-Induced Thrombosis. Cell Metabolism, 2019, 29, 335-347.e5.	7.2	75
40	The role of macrophages in the resolution of inflammation. Journal of Clinical Investigation, 2019, 129, 2619-2628.	3.9	484
41	Inflammatory Monocytes Drive Influenza A Virus–Mediated Lung Injury in Juvenile Mice. Journal of Immunology, 2018, 200, 2391-2404.	0.4	83
42	Letter by Mutlu and Budinger Regarding Article, "Particulate Matter Exposure and Stress Hormone Levels: A Randomized, Double-Blind, Crossover Trial of Air Purification― Circulation, 2018, 137, 1203-1204.	1.6	0
43	JNK2 up-regulates hypoxia-inducible factors and contributes to hypoxia-induced erythropoiesis and pulmonary hypertension. Journal of Biological Chemistry, 2018, 293, 271-284.	1.6	14
44	Inflammatory pathways are upregulated in the nasal epithelium in patients with idiopathic pulmonary fibrosis. Respiratory Research, 2018, 19, 233.	1.4	13
45	Hypercapnia increases airway smooth muscle contractility via caspase-7–mediated miR-133a–RhoA signaling. Science Translational Medicine, 2018, 10, .	5. 8	39
46	Extracorporeal Membrane Oxygenation Can Successfully Support Patients With Severe Acute Respiratory Distress Syndrome in Lieu of Mechanical Ventilation. Critical Care Medicine, 2018, 46, e1070-e1073.	0.4	38
47	Inhalational exposure to particulate matter air pollution alters the composition of the gut microbiome. Environmental Pollution, 2018, 240, 817-830.	3.7	181
48	Targeting the Myofibroblast in Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 834-835.	2.5	13
49	A role for heat shock factor 1 in hypercapniaâ€induced inhibition of inflammatory cytokine expression. FASEB Journal, 2018, 32, 3614-3622.	0.2	19
50	Spleen-derived classical monocytes mediate lung ischemia-reperfusion injury through IL- $1\hat{l}^2$. Journal of Clinical Investigation, 2018, 128, 2833-2847.	3.9	58
51	The Intersection of Aging Biology and the Pathobiology of Lung Diseases: A Joint NHLBI/NIA Workshop. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 1492-1500.	1.7	55
52	Donor pulmonary intravascular nonclassical monocytes recruit recipient neutrophils and mediate primary lung allograft dysfunction. Science Translational Medicine, 2017, 9, .	5 . 8	65
53	Reactive oxygen species as signaling molecules in the development of lung fibrosis. Translational Research, 2017, 190, 61-68.	2.2	67
54	Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. Journal of Experimental Medicine, 2017, 214, 2387-2404.	4.2	755

#	Article	IF	CITATIONS
55	Bim suppresses the development of SLE by limiting myeloid inflammatory responses. Journal of Experimental Medicine, 2017, 214, 3753-3773.	4.2	27
56	HIF and HOIL-1L–mediated PKCζ degradation stabilizes plasma membrane Na,K-ATPase to protect against hypoxia-induced lung injury. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10178-E10186.	3.3	48
57	Non-classical monocytes in tissue injury and cancer. Oncotarget, 2017, 8, 106171-106172.	0.8	11
58	Disease Specific Signatures Identified by RNAâ€seq of Sorted Lung Cellular Populations. FASEB Journal, 2017, 31, 656.4.	0.2	0
59	Lung Injury Combined with Loss of Regulatory T Cells Leads to De Novo Lung-Restricted Autoimmunity. Journal of Immunology, 2016, 197, 51-57.	0.4	25
60	Lung-Restricted Antibodies Mediate Primary Graft Dysfunction and Prevent Allotolerance after Murine Lung Transplantation. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 532-541.	1.4	22
61	Spontaneous Cerebral Hemorrhage and Sudden Biventricular Failure After Lung Transplantation. JAMA Cardiology, 2016, 1, 963.	3.0	0
62	Mitochondrial catalase overexpressed transgenic mice are protected against lung fibrosis in part via preventing alveolar epithelial cell mitochondrial DNA damage. Free Radical Biology and Medicine, 2016, 101, 482-490.	1.3	68
63	Tenascin-C drives persistence of organ fibrosis. Nature Communications, 2016, 7, 11703.	5.8	204
64	Flow Cytometry Reveals Similarities Between Lung Macrophages in Humans and Mice. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 147-149.	1.4	144
65	Macrophage-epithelial paracrine crosstalk inhibits lung edema clearance during influenza infection. Journal of Clinical Investigation, 2016, 126, 1566-1580.	3.9	99
66	Wood Smoke Particle Sequesters Cell Iron to Impact a Biological Effect. Chemical Research in Toxicology, 2015, 28, 2104-2111.	1.7	37
67	Conditional deletion of caspase-8 in macrophages alters macrophage activation in a RIPK-dependent manner. Arthritis Research and Therapy, 2015, 17, 291.	1.6	33
68	Blue Journal Conference. Aging and Susceptibility to Lung Disease. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 261-269.	2.5	149
69	Asbestos-Induced Pulmonary Fibrosis Is Augmented in 8-Oxoguanine DNA Glycosylase Knockout Mice. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 25-36.	1.4	47
70	Influenza virus-induced lung injury: pathogenesis and implications for treatment. European Respiratory Journal, 2015, 45, 1463-1478.	3.1	355
71	Vimentin regulates activation of the NLRP3 inflammasome. Nature Communications, 2015, 6, 6574.	5.8	214
72	Muscle Dysfunction in Patients with Lung Diseases. A Growing Epidemic. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 616-619.	2.5	32

#	Article	lF	CITATIONS
73	The cardiac protein αT-catenin contributes to chemical-induced asthma. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L253-L258.	1.3	17
74	Lung-Specific Loss of $\hat{l}\pm 3$ Laminin Worsens Bleomycin-Induced Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 503-512.	1.4	32
75	Nitric Oxide Prevents Alveolar Senescence and Emphysema in a Mouse Model. PLoS ONE, 2015, 10, e0116504.	1.1	8
76	Impaired Clearance of Influenza A Virus in Obese, Leptin Receptor Deficient Mice Is Independent of Leptin Signaling in the Lung Epithelium and Macrophages. PLoS ONE, 2014, 9, e108138.	1.1	42
77	Nonclassical Ly6Câ^' Monocytes Drive the Development of Inflammatory Arthritis in Mice. Cell Reports, 2014, 9, 591-604.	2.9	270
78	Calcium releaseâ€activated calcium (CRAC) channels mediate the β ₂ â€adrenergic regulation of Na,Kâ€ATPase. FEBS Letters, 2014, 588, 4686-4693.	1.3	6
79	Wnt Coreceptor <i>Lrp5</i> Is a Driver of Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 185-195.	2,5	95
80	HOIL-1L Functions as the PKCζ Ubiquitin Ligase to Promote Lung Tumor Growth. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 688-698.	2.5	34
81	Intratracheal administration of influenza virus is superior to intranasal administration as a model of acute lung injury. Journal of Virological Methods, 2014, 209, 116-120.	1.0	26
82	î²2-Adrenergic agonists augment air pollution–induced IL-6 release and thrombosis. Journal of Clinical Investigation, 2014, 124, 2935-2946.	3.9	106
83	Mitochondrial Reactive Oxygen Species Regulate Transforming Growth Factor-Î ² Signaling. Journal of Biological Chemistry, 2013, 288, 770-777.	1.6	307
84	Suppression of inflammation and acute lung injury by Miz1 via repression of C/EBP-δ. Nature lmmunology, 2013, 14, 461-469.	7.0	71
85	Flow Cytometric Analysis of Macrophages and Dendritic Cell Subsets in the Mouse Lung. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 503-510.	1.4	713
86	Balancing the Risks and Benefits of Oxygen Therapy in Critically Ill Adults. Chest, 2013, 143, 1151-1162.	0.4	50
87	Minimizing Oxidation and Stable Nanoscale Dispersion Improves the Biocompatibility of Graphene in the Lung. Nano Letters, 2011, 11, 5201-5207.	4.5	480
88	Update in Environmental and Occupational Medicine 2010. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1614-1619.	2.5	13
89	Lung-specific loss of the laminin $\hat{l}\pm 3$ subunit confers resistance to mechanical injury. Journal of Cell Science, 2011, 124, 2927-2937.	1.2	32
90	Epithelial Cell Death Is an Important Contributor to Oxidant-mediated Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1043-1054.	2.5	93

#	Article	IF	CITATIONS
91	Angiotensin II and pulmonary fibrosis, a new twist on an old story. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 301, L267-L268.	1.3	8
92	Particulate Matter-Induced Lung Inflammation Increases Systemic Levels of PAI-1 and Activates Coagulation Through Distinct Mechanisms. PLoS ONE, 2011, 6, e18525.	1.1	90
93	l̂²-Catenin/T-cell Factor Signaling Is Activated during Lung Injury and Promotes the Survival and Migration of Alveolar Epithelial Cells. Journal of Biological Chemistry, 2010, 285, 3157-3167.	1.6	105
94	Stretch-Induced Activation of AMP Kinase in the Lung Requires Dystroglycan. American Journal of Respiratory Cell and Molecular Biology, 2008, 39, 666-672.	1.4	28
95	The cellular basis for diverse responses to oxygen. Free Radical Biology and Medicine, 2007, 42, 165-174.	1.3	235
96	Ambient particulate matter accelerates coagulation via an IL-6–dependent pathway. Journal of Clinical Investigation, 2007, 117, 2952-2961.	3.9	256
97	Proapoptotic Bid is required for pulmonary fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4604-4609.	3.3	99
98	Active transforming growth factor- \hat{l}^21 activates the procollagen I promoter in patients with acute lung injury. Intensive Care Medicine, 2005, 31, 121-128.	3.9	72
99	To live or die: a critical decision for the lung. Journal of Clinical Investigation, 2005, 115, 828-830.	3.9	6
100	Hyperoxia-induced Apoptosis Does Not Require Mitochondrial Reactive Oxygen Species and Is Regulated by Bcl-2 Proteins. Journal of Biological Chemistry, 2002, 277, 15654-15660.	1.6	89
101	Advances in the management of idiopathic pulmonary fibrosis and progressive pulmonary fibrosis. BMJ, The, 0, , e066354.	3.0	14
102	Suppression of Allergic Asthma by Loss of Function of Miz1-Mediated Th1 Skewing. American Journal of Respiratory Cell and Molecular Biology, 0 , , .	1.4	1