Landobasa Y M Tobing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3886208/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Asymmetric Fano resonance and bistability for high extinction ratio, large modulation depth, and low power switching. Optics Express, 2006, 14, 12770.	3.4	94
2	Matrix analysis of 2-D microresonator lattice optical filters. IEEE Journal of Quantum Electronics, 2005, 41, 1410-1418.	1.9	53
3	Surface plasmon enhanced infrared photodetection. Opto-Electronic Advances, 2019, 2, 18002601-18002610.	13.3	53
4	Optical buffer with higher delay-bandwidth product in a two-ring system. Optics Express, 2008, 16, 1796.	3.4	52
5	Coupled resonator-induced transparency in ring-bus-ring Mach-Zehnder interferometer. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 28.	2.1	49
6	Manipulating Coherent Light–Matter Interaction: Continuous Transition between Strong Coupling and Weak Coupling in MoS ₂ Monolayer Coupled with Plasmonic Nanocavities. Advanced Optical Materials, 2019, 7, 1900857.	7.3	48
7	Concurrent Inhibition and Redistribution of Spontaneous Emission from All Inorganic Perovskite Photonic Crystals. ACS Photonics, 2019, 6, 1331-1337.	6.6	39
8	Nested ring Mach-Zehnder interferometer. Optics Express, 2007, 15, 437.	3.4	38
9	Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform. Scientific Reports, 2013, 3, 2437.	3.3	38
10	Boxlike filter response based on complementary photonic bandgaps in two-dimensional microresonator arrays. Optics Letters, 2008, 33, 2512.	3.3	28
11	Strong Plasmon–Exciton Interactions on Nanoantenna Array–Monolayer WS ₂ Hybrid System. Advanced Optical Materials, 2020, 8, 1901002.	7.3	28
12	Coupled Fano resonators. Optics Express, 2010, 18, 18820.	3.4	27
13	Experimental demonstration of coupled-resonator-induced-transparency in silicon-on-insulator based ring-bus-ring geometry. Optics Express, 2011, 19, 17813.	3.4	27
14	Direct patterning of high density sub-15 nm gold dot arrays using ultrahigh contrast electron beam lithography process on positive tone resist. Nanotechnology, 2013, 24, 075303.	2.6	26
15	Defect modes in micro-ring resonator arrays. Optics Express, 2005, 13, 7800.	3.4	25
16	Subâ€100â€nm Sized Silver Split Ring Resonator Metamaterials with Fundamental Magnetic Resonance in the Middle Visible Spectrum. Advanced Optical Materials, 2014, 2, 280-285.	7.3	25
17	Phase engineering for ring enhanced Mach-Zehnder interferometers. Optics Express, 2005, 13, 4580.	3.4	24
18	Finesse enhancement in silicon-on-insulator two-ring resonator system. Applied Physics Letters, 2008, 92, 101122.	3.3	24

Landobasa Y M Tobing

#	Article	IF	CITATIONS
19	Observation of the Kinetic Inductance Limitation for the Fundamental Magnetic Resonance in Ultrasmall Gold <i>v</i> â€Shape Split Ring Resonators. Advanced Optical Materials, 2016, 4, 1047-1052.	7.3	24
20	Proposal for an Ultranarrow Passband Using Two Coupled Rings. IEEE Photonics Technology Letters, 2007, 19, 1688-1690.	2.5	21
21	Polarization invariant plasmonic nanostructures for sensing applications. Scientific Reports, 2017, 7, 7539.	3.3	21
22	Room temperature plasmon-enhanced InAs0.91Sb0.09-based heterojunction <i>n-i-p</i> mid-wave infrared photodetector. Applied Physics Letters, 2018, 113, .	3.3	21
23	Nested-Ring Mach–Zehnder Interferometer in Silicon-on-Insulator. IEEE Photonics Technology Letters, 2008, 20, 9-11.	2.5	20
24	Pole–Zero Dynamics of High-Order Ring Resonator Filters. Journal of Lightwave Technology, 2007, 25, 1568-1575.	4.6	19
25	High quality InAsSb-based heterostructure n-i-p mid-wavelength infrared photodiode. Applied Surface Science, 2018, 427, 605-608.	6.1	19
26	Azimuthally Polarized, Circular Colloidal Quantum Dot Laser Beam Enabled by a Concentric Grating. ACS Photonics, 2016, 3, 2255-2261.	6.6	18
27	Highly sensitive and scalable AAO-based nano-fibre SERS substrate for sensing application. Nanotechnology, 2017, 28, 235302.	2.6	18
28	Strong Plasmon-Wannier Mott Exciton Interaction with High Aspect Ratio Colloidal Quantum Wells. Matter, 2020, 2, 1550-1563.	10.0	18
29	Large contrast enhancement by sonication assisted cold development process for low dose and ultrahigh resolution patterning on ZEP520A positive tone resist. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, 051601.	1.2	17
30	Polarization-Resolved Plasmon-Modulated Emissions of Quantum Dots Coupled to Aluminum Dimers with Sub-20 nm Gaps. ACS Photonics, 2018, 5, 1566-1574.	6.6	17
31	Controlling Spontaneous Emission from Perovskite Nanocrystals with Metal–Emitter–Metal Nanostructures. Crystals, 2021, 11, 1.	2.2	17
32	Coupling-induced phase shift in a microring-coupled Mach-Zehnder interferometer. Optics Letters, 2010, 35, 238.	3.3	16
33	Groove-structured metasurfaces for modulation of surface plasmon propagation. Applied Physics Express, 2014, 7, 052001.	2.4	15
34	Preferential Excitation of the Hybrid Magnetic–Electric Mode as a Limiting Mechanism for Achievable Fundamental Magnetic Resonance in Planar Aluminum Nanostructures. Advanced Materials, 2016, 28, 889-896.	21.0	15
35	Demonstration of low-loss on-chip integrated plasmonic waveguide based on simple fabrication steps on silicon-on-insulator platform. Applied Physics Letters, 2012, 101, 041117.	3.3	14
36	Temperature-dependent spontaneous emission of PbS quantum dots inside photonic nanostructures at telecommunication wavelength. Optics Communications, 2017, 383, 555-560.	2.1	14

Landobasa Y M Tobing

#	Article	IF	CITATIONS
37	Single Plasmonic Structure Enhanced Dual-band Room Temperature Infrared Photodetection. Scientific Reports, 2018, 8, 1548.	3.3	14
38	Resonance Enhancement in Silicon-on-Insulator-Based Two-Ring Mach–Zehnder Interferometer. IEEE Photonics Technology Letters, 2008, 20, 1560-1562.	2.5	13
39	Combining sonicated cold development and pulsed electrodeposition for high aspect ratio sub-10 nm gap gold dimers for sensing applications in the visible spectrum. Nanoscale, 2018, 10, 5221-5228.	5.6	13
40	High Order Magnetic and Electric Resonant Modes of Split Ring Resonator Metasurface Arrays for Strong Enhancement of Mid-Infrared Photodetection. ACS Applied Materials & Interfaces, 2020, 12, 8835-8844.	8.0	13
41	Plasmon-induced thermal tuning of few-exciton strong coupling in 2D atomic crystals. Optica, 2021, 8, 1416.	9.3	12
42	Ultra-small v-shaped gold split ring resonators for biosensing using fundamental magnetic resonance in the visible spectrum. Nanotechnology, 2017, 28, 405305.	2.6	11
43	Electrically controlled enhancement in plasmonic mid-infrared photodiode. Optics Express, 2018, 26, 5452.	3.4	11
44	Relaxation of Critical Coupling Condition and Characterization of Coupling-Induced Frequency Shift in Two-Ring Structures. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 77-84.	2.9	10
45	Study of dual color infrared photodetection from n-GaSb/n-InAsSb heterostructures. AIP Advances, 2016, 6, 025120.	1.3	10
46	Reliable Fabrication of High Aspect Ratio Plasmonic Nanostructures Based on Seedless Pulsed Electrodeposition. Advanced Materials Technologies, 2019, 4, 1800364.	5.8	10
47	Hybridized surface lattice modes in intercalated 3-disk plasmonic crystals for high figure-of-merit plasmonic sensing. Nanoscale, 2021, 13, 4092-4102.	5.6	9
48	Fundamental Principles of Operation and Notes on Fabrication of Photonic Microresonators. Springer Series in Optical Sciences, 2010, , 1-27.	0.7	9
49	Demonstration of defect modes in coupled microresonator arrays fabricated in silicon-on-insulator technology. Optics Letters, 2008, 33, 1939.	3.3	8
50	Numerical and experimental studies of coupling-induced phase shift in resonator and interferometric integrated optics devices. Optics Express, 2012, 20, 5789.	3.4	8
51	Sub-10-nm Size and Sub-40-nm Pitch Metal Dot Patterning for Low-Cost Bit Patterned Media Application. IEEE Nanotechnology Magazine, 2014, 13, 496-501.	2.0	7
52	Surface Plasmon Enhancement on Infrared Photodetection. Procedia Engineering, 2016, 140, 152-158.	1.2	7
53	InAs0.9Sb0.1-based hetero-p-i-n structure grown on GaSb with high mid-infrared photodetection performance at room temperature. Journal of Materials Science, 2018, 53, 13010-13017.	3.7	7
54	Two-dimensional metallic square-hole array for enhancement of mid-wavelength infrared photodetection. Optical and Quantum Electronics, 2016, 48, 1.	3.3	6

#	Article	IF	CITATIONS
55	Hybrid Transverse–Longitudinal Modes for High Figureâ€ofâ€Merit Localized Plasmonic Refractometric Sensing in the Visible Spectrum. Advanced Optical Materials, 2020, 8, 1901739.	7.3	6
56	The Transmission Properties of One-Bus Two-Ring Devices. IEICE Transactions on Electronics, 2008, E91-C, 167-172.	0.6	5
57	Asymmetric Fano resonance and bistability in a two-ring resonator optical switch with high extinction ratio and low switching threshold. Optical and Quantum Electronics, 2007, 38, 1143-1150.	3.3	4
58	Box-like filter response of two-dimensional array of microring resonator fabricated in silicon-on-insulator technology. , 2008, , .		4
59	InAs _{0.91} Sb _{0.09} photoconductor for near and middle infrared photodetection. Physica Scripta, 2016, 91, 115801.	2.5	4
60	Plasmon–exciton systems with high quantum yield using deterministic aluminium nanostructures with rotational symmetries. Nanoscale, 2019, 11, 20315-20323.	5.6	4
61	Nearly total optical transmission of linearly polarized light through transparent electrode composed of GaSb monolithic high-contrast grating integrated with gold. Nanophotonics, 2021, 10, 3823-3830.	6.0	4
62	Rotated fourfold U-shape metasurface for polarization-insensitive strong enhancement of mid-infrared photodetection. Optics Express, 2020, 28, 4225.	3.4	4
63	A buffer-free method for growth of InAsSb films on GaAs (001) substrates using MOCVD. Journal of Crystal Growth, 2017, 468, 252-257.	1.5	3
64	A Simple Method for the Growth of Very Smooth and Ultra-Thin GaSb Films on GaAs (111) Substrate by MOCVD. Journal of Electronic Materials, 2017, 46, 3867-3872.	2.2	3
65	Resonance Modes of Tall Plasmonic Nanostructures and Their Applications for Biosensing. IEEE Journal of Quantum Electronics, 2020, 56, 1-7.	1.9	3
66	Interplays of Dipole and Chargeâ€Transferâ€Plasmon Modes in Capacitively and Conductively Coupled Dimer with High Aspect Ratio Nanogaps. Advanced Optical Materials, 0, , 2100748.	7.3	3
67	Experimental verification of finesse enhancement scheme in two-ring resonator system. , 2008, , .		2
68	Aluminum based structures for manipulating short visible wavelength in-plane surface plasmon polariton propagation. Optics Express, 2015, 23, 22883.	3.4	2
69	REVERSAL OF INTERFERENCE IN LEFT HANDED MEDIUM. Journal of Nonlinear Optical Physics and Materials, 2005, 14, 245-257.	1.8	1
70	Transmission properties and application of a two-ring one-bus building block. , 2008, , .		1
71	Nested-ring Mach-Zehnder interferometer in silicon-on-insulator. , 2008, , .		1
72	New processes associated with electron-beam lithography for ultra-small resonators. , 2017, , .		1

#	Article	IF	CITATIONS
73	Vertical growth of plasmonic nanostructures via electrodeposition on a conductive oxide. Procedia Engineering, 2017, 215, 60-65.	1.2	1
74	Nanobridges formed through electron beam image reversal lithography for plasmonic mid-infrared resonators with high aspect ratio nanogaps. Nanotechnology, 2019, 30, 425302.	2.6	1
75	Comparative study of U- and U4-split-ring resonator-based metasurfaces for sensing in near- and mid-infrared region. Journal of Optics (United Kingdom), 2020, 22, 125104.	2.2	1
76	Theoretical design of a "perfect" filter based on coupled ring resonator arrays. , 0, , .		0
77	Photonic bandgap properties of microcavity ring resonator arrays. , 2006, , .		Ο
78	Asymmetrical Fano resonance and Bistability in two ring resonator configuration. , 2006, , .		0
79	Disk-to-Pyramidal GaAs Islands Shape Evolution on Nanodisks-Patterned Substrate. , 2008, , .		0
80	Bistability engineering in ring-coupled Mach-Zehnder interferometers for efficient all-optical switching. , 2008, , .		0
81	Defect modes in microring resonator arrays fabricated in silicon-on-insulator technology. , 2008, , .		Ο
82	Optical buffering scheme based on two-ring resonator system. , 2008, , .		0
83	Electromagnetically induced transparency-like resonance in ring-bus-ring Mach-Zehnder interferometer. , 2010, , .		0
84	Experimental quantification of coupling-induced effects in Ring-Enhanced Mach-Zehnder Interferometers. , 2011, , .		0
85	Low voltage sub-30nm dielectric and metal nanopatterning for plasmonic and metamaterial applications. , 2011, , .		О
86	Realization of coupled-resonator-induced transparency in silicon-on-insulator based ring-bus-ring geometry. , 2011, , .		0
87	Characteristics of defect modes in side-coupled and mutually coupled microresonator arrays. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 738.	2.1	О
88	The role of cold sonicated development scenarios for achieving ultradense and high aspect ratio for optical metamaterial applications. , 2012, , .		0
89	Sub-wavelength structures and their optical properties. , 2014, , .		0
90	Cogwheels for generation of surface plasmon polariton vortex. International Journal of Nanotechnology, 2015, 12, 909.	0.2	0

#	Article	IF	CITATIONS
91	Gold and silver resonators and their optical properties. International Journal of Nanotechnology, 2016, 13, 561.	0.2	0
92	Antimonide-based semiconductors for optoelectronic devices. , 2016, , .		0
93	Room temperature strong coupling of monolayer WS <inf>2</inf> with gold nanoantennae. , 2017, , .		0