
Marcin Lebioda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3886168/publications.pdf Version: 2024-02-01

MARCINIERIODA

#	Article	IF	CITATIONS
1	Atypical Properties of a Thin Silver Layer Deposited on a Composite Textile Substrate. Materials, 2022, 15, 1814.	2.9	2
2	Joining of Electrodes to Ultra-Thin Metallic Layers on Ceramic Substrates in Cryogenic Sensors. Sensors, 2021, 21, 4919.	3.8	4
3	Laser Patterning a Graphene Layer on a Ceramic Substrate for Sensor Applications. Sensors, 2020, 20, 2134.	3.8	9
4	Electrical and Thermal Properties of Heater-Sensor Microsystems Patterned in TCO Films for Wide-Range Temperature Applications from 15 K to 350 K. Sensors, 2018, 18, 1831.	3.8	10
5	Modelling and applications of conductive elements on textile materials. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2018, 37, 1645-1656.	0.9	11
6	Analysis of thermal and electrical properties of heating microsystems based on TCO layers. , 2017, , .		1
7	Surface heat sources on textile composites $\hat{a} \in \mathbb{C}$ Modeling and implementation. , 2017, , .		4
8	A Fully Transparent Flexible Sensor for Cryogenic Temperatures Based on High Strength Metallurgical Graphene. Sensors, 2017, 17, 51.	3.8	21
9	Magnetic Properties and Flux Distribution in the LaFeCoSi/FeCoV Hybrid Structure. Acta Physica Polonica A, 2017, 131, 1294-1298.	0.5	2
10	Scaling of Anhysteretic Curves for LaFeCoSi Alloy near the Transition Point. Acta Physica Polonica A, 2017, 131, 801-803.	0.5	2
11	Influence of cryogenic temperatures on electrical properties of structures patterned by a laser in ITO/Ag/ITO layers. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1150-1156.	1.8	12
12	Analysis of normal zone propagation in superconducting tapes initiated by thermal disturbances. Journal of Physics: Conference Series, 2016, 709, 012011.	0.4	3
13	Power Losses in LaFexCoySi1.1Intermetallics near the Magnetic Phase Transition. Acta Physica Polonica A, 2015, 128, 98-103.	0.5	8
14	Dynamic properties of cryogenic temperature sensors. Przeglad Elektrotechniczny, 2015, 1, 227-229.	0.2	6
15	Simulation of Thermal Processes in Superconducting Pancake Coils Cooled by GM Cryocooler. Journal of Physics: Conference Series, 2014, 494, 012018.	0.4	10
16	Propagation of normal zone in superconducting tapes due to heating in near-electrode area. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 334-339.	3.5	5