Ignacio Ballesteros Perdices

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/388545/publications.pdf

Version: 2024-02-01

72 papers

4,847 citations

70961 41 h-index 98622 67 g-index

72 all docs 72 docs citations

72 times ranked 4176 citing authors

#	Article	IF	CITATIONS
1	Lignin-enriched residues from bioethanol production: Chemical characterization, isocyanate functionalization and oil structuring properties. International Journal of Biological Macromolecules, 2022, 195, 412-423.	3.6	13
2	Valorization of Greenhouse Horticulture Waste from a Biorefinery Perspective. Foods, 2021, 10, 814.	1.9	10
3	Production of xylooligosaccharides, bioethanol, and lignin from structural components of barley straw pretreated with a steam explosion. Bioresource Technology, 2021, 342, 125953.	4.8	23
4	Optimisation of Uncatalysed Steam Explosion of Lignocellulosic Biomasses to Obtain Both C6- and C5-Sugars. Waste and Biomass Valorization, 2020, 11, 231-244.	1.8	6
5	Processing of extracted olive oil pomace residue by hydrothermal or dilute acid pretreatment and enzymatic hydrolysis in a biorefinery context. Renewable Energy, 2020, 145, 1235-1245.	4.3	73
6	Sugars Production from Municipal Forestry and Greening Wastes Pretreated by an Integrated Steam Explosion-Based Process. Energies, 2020, 13, 4432.	1.6	15
7	Towards sequential bioethanol and l-lactic acid co-generation: Improving xylose conversion to l-lactic acid in presence of lignocellulosic ethanol with an evolved Bacillus coagulans. Renewable Energy, 2020, 153, 759-765.	4.3	28
8	Valorisation of olive stone by-product for sugar production using a sequential acid/steam explosion pretreatment. Industrial Crops and Products, 2020, 148, 112279.	2.5	55
9	Efficient utilization of hydrolysates from steam-exploded gardening residues for lactic acid production by optimization of enzyme addition and pH control. Waste Management, 2020, 107, 235-243.	3.7	22
10	Bioprocessing of rice husk into monosaccharides and the fermentative production of bioethanol and lactate. Cellulose, 2019, 26, 7309-7322.	2.4	16
11	Integral process assessment of sugarcane agricultural crop residues conversion to ethanol. Bioresource Technology, 2018, 260, 241-247.	4.8	36
12	Integrated production of second generation ethanol and lactic acid from steam-exploded elephant grass. Bioresource Technology, 2018, 249, 1017-1024.	4.8	31
13	The potential of agricultural banana waste for bioethanol production. Fuel, 2018, 213, 176-185.	3.4	99
14	Production of xylooligosaccharides and cellulosic ethanol from steam-exploded barley straw. Holzforschung, 2018, 73, 35-44.	0.9	18
15	Optimized use of hemicellulose within a biorefinery for processing high value-added xylooligosaccharides. Industrial Crops and Products, 2017, 99, 41-48.	2.5	79
16	Optimal conditions of acidâ€catalysed steam explosion pretreatment of banana lignocellulosic biomass for fermentable sugar production. Journal of Chemical Technology and Biotechnology, 2017, 92, 2351-2359.	1.6	39
17	Evaluation of lignins from side-streams generated in an olive tree pruning-based biorefinery: Bioethanol production and alkaline pulping. International Journal of Biological Macromolecules, 2017, 105, 238-251.	3.6	46
18	A Sequential Steam Explosion and Reactive Extrusion Pretreatment for Lignocellulosic Biomass Conversion within a Fermentation-Based Biorefinery Perspective. Fermentation, 2017, 3, 15.	1.4	48

#	Article	IF	CITATIONS
19	High-solids content enzymatic hydrolysis of hydrothermally pretreated sugarcane bagasse using a laboratory-made enzyme blend and commercial preparations. Process Biochemistry, 2016, 51, 1561-1567.	1.8	42
20	Impact of temperature and photoperiod on anaerobic biodegradability of microalgae grown in urban wastewater. International Biodeterioration and Biodegradation, 2016, 106, 16-23.	1.9	40
21	Steam Explosion for Wheat Straw Pretreatment for Sugars Production. Bioethanol, 2016, 2, .	1.2	65
22	Alkaline twin-screw extrusion fractionation of olive-tree pruning biomass. Industrial Crops and Products, 2015, 74, 336-341.	2.5	31
23	Optimization of uncatalyzed steam explosion pretreatment of rapeseed straw for biofuel production. Bioresource Technology, 2015, 190, 97-105.	4.8	77
24	Lignin-enriched Fermentation Residues from Bioethanol Production of Fast-growing Poplar and Forage Sorghum. BioResources, 2015, 10 , .	0.5	18
25	Ethanol production from glucose and xylose obtained from steam exploded water-extracted olive tree pruning using phosphoric acid as catalyst. Bioresource Technology, 2014, 153, 101-107.	4.8	68
26	Sugar production from barley straw biomass pretreated by combined alkali and enzymatic extrusion. Bioresource Technology, 2014, 158, 262-268.	4.8	47
27	Study of process configuration and catalyst concentration in integrated alkaline extrusion of barley straw for bioethanol production. Fuel, 2014, 134, 448-454.	3.4	30
28	Second generation bioethanol from steam exploded Eucalyptus globulus wood. Fuel, 2013, 111, 66-74.	3.4	64
29	Ethanol from laccase-detoxified lignocellulose by the thermotolerant yeast Kluyveromyces marxianus—Effects of steam pretreatment conditions, process configurations and substrate loadings. Biochemical Engineering Journal, 2013, 79, 94-103.	1.8	34
30	Optimization of integrated alkaline–extrusion pretreatment of barley straw for sugar production by enzymatic hydrolysis. Process Biochemistry, 2013, 48, 775-781.	1.8	49
31	Comparing cell viability and ethanol fermentation of the thermotolerant yeast Kluyveromyces marxianus and Saccharomyces cerevisiae on steam-exploded biomass treated with laccase. Bioresource Technology, 2013, 135, 239-245.	4.8	61
32	Enzymatic hydrolysis from carbohydrates of barley straw pretreated by ionic liquids. Journal of Chemical Technology and Biotechnology, 2013, 88, 937-941.	1.6	20
33	Ethanol Production from Sugarcane Bagasse Pretreated by Steam Explosion. Electronic Journal of Energy & Environment, 2013, 1 , .	0.3	33
34	Biological conversion of forage sorghum biomass to ethanol by steam explosion pretreatment and simultaneous hydrolysis and fermentation at high solid content. Biomass Conversion and Biorefinery, 2012, 2, 123-132.	2.9	28
35	Production, purification and characterisation of oligosaccharides from olive tree pruning autohydrolysis. Industrial Crops and Products, 2012, 40, 225-231.	2.5	70
36	Effect of water extraction on sugars recovery from steam exploded olive tree pruning. Bioresource Technology, 2011, 102, 6611-6616.	4.8	77

#	Article	IF	Citations
37	Different process configurations for bioethanol production from pretreated olive pruning biomass. Journal of Chemical Technology and Biotechnology, 2011, 86, 881-887.	1.6	74
38	Second-generation ethanol production from steam exploded barley straw by Kluyveromyces marxianus CECT 10875. Fuel, 2011, 90, 1624-1630.	3.4	88
39	Ethanol Production from the Organic Fraction Obtained After Thermal Pretreatment of Municipal Solid Waste. Applied Biochemistry and Biotechnology, 2010, 161, 423-431.	1.4	55
40	Bioethanol production from wheat straw by the thermotolerant yeast Kluyveromyces marxianus CECT 10875 in a simultaneous saccharification and fermentation fed-batch process. Fuel, 2009, 88, 2142-2147.	3.4	110
41	Dilute sulfuric acid pretreatment of cardoon for ethanol production. Biochemical Engineering Journal, 2008, 42, 84-91.	1.8	77
42	Optimizing Liquid Hot Water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel, 2008, 87, 3640-3647.	3.4	236
43	Xylanase Contribution to the Efficiency of Cellulose Enzymatic Hydrolysis of Barley Straw. , 2007, , 353-365.		2
44	Effect of process variables on liquid hot water pretreatment of wheat straw for bioconversion to fuelâ€ethanol in a batch reactor. Journal of Chemical Technology and Biotechnology, 2007, 82, 929-938.	1.6	97
45	Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass. Process Biochemistry, 2007, 42, 1003-1009.	1.8	179
46	Fractionation of Cynara cardunculus (cardoon) biomass by dilute-acid pretreatment. Applied Biochemistry and Biotechnology, 2007, 137-140, 239-252.	1.4	14
47	Xylanase contribution to the efficiency of cellulose enzymatic hydrolysis of barley straw. Applied Biochemistry and Biotechnology, 2007, 137-140, 353-365.	1.4	54
48	Ethanol Production From Steam-Explosion Pretreated Wheat Straw., 2006,, 496-508.		27
49	Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification. Process Biochemistry, 2006, 41, 423-429.	1.8	243
50	Effect of Inhibitors Released During Steam-Explosion Pretreatment of Barley Straw on Enzymatic Hydrolysis. Applied Biochemistry and Biotechnology, 2006, 129, 278-288.	1.4	142
51	Ethanol Production From Steam-Explosion Pretreated Wheat Straw. Applied Biochemistry and Biotechnology, 2006, 130, 496-508.	1.4	260
52	Ethanol Production From Pretreated Olive Tree Wood and Sunflower Stalks by an SSF Process. Applied Biochemistry and Biotechnology, 2006, 130, 631-643.	1.4	59
53	Inulin-Containing Biomass for Ethanol Production <i>Carbohydrate Extraction and Ethanol Fermentation</i> Applied Biochemistry and Biotechnology, 2006, 132, 922-932.	1.4	39
54	Effects of acetic acid, furfural and catechol combinations on ethanol fermentation of Kluyveromyces marxianus. Process Biochemistry, 2006, 41, 1223-1228.	1.8	56

#	Article	IF	Citations
55	Effect of Inhibitors Released During Steam-Explosion Pretreatment of Barley Straw on Enzymatic Hydrolysis., 2006,, 278-288.		7
56	Effect of Binary Combinations of Selected Toxic Compounds on Growth and Fermentation of Kluyveromyces marxianus. Biotechnology Progress, 2004, 20, 715-720.	1.3	49
57	Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochemistry, 2004, 39, 1843-1848.	1.8	434
58	Effect of Lignocellulosic Degradation Compounds from Steam Explosion Pretreatment on Ethanol Fermentation by Thermotolerant Yeast Kluyveromyces marxianus. Applied Biochemistry and Biotechnology, 2003, 105, 141-154.	1.4	118
59	Hydrothermal Pretreatment Conditions to Enhance Ethanol Production from Poplar Biomass. Applied Biochemistry and Biotechnology, 2003, 105, 87-100.	1.4	152
60	Changes in various physical/chemical parameters of Pinus pinaster wood after steam explosion pretreatment. Biomass and Bioenergy, 2003, 25, 301-308.	2.9	150
61	Hydrothermal Pretreatment Conditions to Enhance Ethanol Production from Poplar Biomass. , 2003, , 87-100.		34
62	Ethanol Production from Olive Oil Extraction Residue Pretreated with Hot Water., 2002,, 717-732.		6
63	Enzymic hydrolysis of steam exploded herbaceous agricultural waste (Brassica carinata) at different particule sizes. Process Biochemistry, 2002, 38, 187-192.	1.8	138
64	Title is missing!. World Journal of Microbiology and Biotechnology, 2002, 18, 559-561.	1.7	67
65	Ethanol Production from Olive Oil Extraction Residue Pretreated with Hot Water. Applied Biochemistry and Biotechnology, 2002, 98-100, 717-732.	1.4	43
66	Simultaneous saccharification and fermentation process for converting the cellulosic fraction of olive oil extraction residue into ethanol Grasas Y Aceites, 2002, 53, .	0.3	4
67	Ethanol Production from Lignocellulosic Byproducts of Olive Oil Extraction. Applied Biochemistry and Biotechnology, 2001, 91-93, 237-252.	1.4	56
68	Effect of Chip Size on Steam Explosion Pretreatment of Softwood. Applied Biochemistry and Biotechnology, 2000, 84-86, 97-110.	1.4	95
69	Effect of surfactants and zeolites on simultaneous saccharification and fermentation of steam-exploded poplar biomass to ethanol. Applied Biochemistry and Biotechnology, 1998, 70-72, 369-381.	1.4	40
70	Effect of media supplementation on ethanol production by simultaneous saccharification and fermentation process. Applied Biochemistry and Biotechnology, 1994, 45-46, 283-294.	1.4	11
71	Optimization of the simultaneous saccharification and fermentation process using thermotolerant yeasts. Applied Biochemistry and Biotechnology, 1993, 39-40, 201-211.	1.4	36
72	Selection of thermotolerant yeasts for simultaneous saccharification and fermentation (SSF) of cellulose to ethanol. Applied Biochemistry and Biotechnology, 1991, 28-29, 307-315.	1.4	84