List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3885048/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Defective Suppressor Function in CD4+CD25+ T-Cells From Patients With Type 1 Diabetes. Diabetes, 2005, 54, 92-99.	0.6	745
2	Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. Journal of Experimental Medicine, 2012, 209, 51-60.	8.5	572
3	Coxsackie B4 virus infection of β cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5115-5120.	7.1	521
4	Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. Journal of Clinical Investigation, 2004, 113, 451-463.	8.2	420
5	The role of T-cells in the pathogenesis of Type 1 diabetes: From cause to cure. Diabetologia, 2003, 46, 305-321.	6.3	343
6	CTLs are targeted to kill β cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope. Journal of Clinical Investigation, 2008, 118, 3390-402.	8.2	315
7	Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nature Reviews Endocrinology, 2021, 17, 150-161.	9.6	256
8	Autoreactive CD8 T cells associated with cell destruction in type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18425-18430.	7.1	252
9	Translational Mini-Review Series on Type 1 Diabetes: Systematic analysis of T cell epitopes in autoimmune diabetes. Clinical and Experimental Immunology, 2007, 148, 1-16.	2.6	233
10	Introducing the Endotype Concept to Address the Challenge of Disease Heterogeneity in Type 1 Diabetes. Diabetes Care, 2020, 43, 5-12.	8.6	220
11	Clinical Dutch-English Lambert-Eaton Myasthenic Syndrome (LEMS) Tumor Association Prediction Score Accurately Predicts Small-Cell Lung Cancer in the LEMS. Journal of Clinical Oncology, 2011, 29, 902-908.	1.6	210
12	T-cell clones from a type-1 diabetes patient respond to insulin secretory granule proteins. Nature, 1990, 345, 632-634.	27.8	191
13	Diabetes relief in mice by glucose-sensing insulin-secreting human α-cells. Nature, 2019, 567, 43-48.	27.8	188
14	Simultaneous Detection of Circulating Autoreactive CD8+ T-Cells Specific for Different Islet Cell–Associated Epitopes Using Combinatorial MHC Multimers. Diabetes, 2010, 59, 1721-1730.	0.6	187
15	Auto- and alloimmune reactivity to human islet allografts transplanted into type 1 diabetic patients. Diabetes, 1999, 48, 484-490.	0.6	183
16	Autoimmunity against a defective ribosomal insulin gene product in type 1 diabetes. Nature Medicine, 2017, 23, 501-507.	30.7	182
17	Cytomegalovirus in autoimmunity: T cell crossreactivity to viral antigen and autoantigen glutamic acid decarboxylase. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 3988-3991.	7.1	174
18	Cellular Islet Autoimmunity Associates with Clinical Outcome of Islet Cell Transplantation. PLoS ONE, 2008, 3, e2435.	2.5	172

#	Article	IF	CITATIONS
19	Antigen Targets of Type 1 Diabetes Autoimmunity. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a007781-a007781.	6.2	171
20	Correlation between beta cell mass and glycemic control in type 1 diabetic recipients of islet cell graft. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17444-17449.	7.1	166
21	Distinct fecal and oral microbiota composition in human type 1 diabetes, an observational study. PLoS ONE, 2017, 12, e0188475.	2.5	163
22	Islet inflammation and CXCL10 in recent-onset type 1 diabetes. Clinical and Experimental Immunology, 2010, 159, 338-343.	2.6	161
23	Faecal microbiota transplantation halts progression of human new-onset type 1 diabetes in a randomised controlled trial. Gut, 2021, 70, 92-105.	12.1	161
24	Islet-Derived CD4 T Cells Targeting Proinsulin in Human Autoimmune Diabetes. Diabetes, 2017, 66, 722-734.	0.6	154
25	Immune checkpoint inhibitors and type 1 diabetes mellitus: a case report and systematic review. European Journal of Endocrinology, 2019, 181, 363-374.	3.7	154
26	Posttranslational Modification of HLA-DQ Binding Islet Autoantigens in Type 1 Diabetes. Diabetes, 2014, 63, 237-247.	0.6	150
27	Plasmid-Encoded Proinsulin Preserves C-Peptide While Specifically Reducing Proinsulin-Specific CD8 ⁺ T Cells in Type 1 Diabetes. Science Translational Medicine, 2013, 5, 191ra82.	12.4	149
28	T-cell reactivity to 38 kD insulin-secretory-granule protein in patients with recent-onset type 1 diabetes. Lancet, The, 1991, 337, 1439-1441.	13.7	124
29	The challenge of modulating \hat{l}^2 -cell autoimmunity in type 1 diabetes. Lancet Diabetes and Endocrinology,the, 2019, 7, 52-64.	11.4	124
30	Autoreactive T cell Responses in Insulin-dependent (Type 1) Diabetes Mellitus. Report of the First International Workshop for Standardization of T cell assays. Journal of Autoimmunity, 1999, 13, 267-282.	6.5	121
31	Immune modulation in humans: implications for type 1 diabetes mellitus. Nature Reviews Endocrinology, 2014, 10, 229-242.	9.6	121
32	T cell receptor reversed polarity recognition of a self-antigen major histocompatibility complex. Nature Immunology, 2015, 16, 1153-1161.	14.5	115
33	Multifocal or generalized tonic dystonia of complex regional pain syndrome: A distinct clinical entity associated with HLA-DR13. Annals of Neurology, 2000, 48, 113-116.	5.3	113
34	Antigen-based immune modulation therapy for type 1 diabetes: the era of precision medicine. Lancet Diabetes and Endocrinology,the, 2019, 7, 65-74.	11.4	102
35	Differences in Baseline Lymphocyte Counts and Autoreactivity Are Associated With Differences in Outcome of Islet Cell Transplantation in Type 1 Diabetic Patients. Diabetes, 2009, 58, 2267-2276.	0.6	96
36	Naturally Arising Human CD4 T-Cells That Recognize Islet Autoantigens and Secrete Interleukin-10 Regulate Proinflammatory T-Cell Responses via Linked Suppression. Diabetes, 2010, 59, 1451-1460.	0.6	96

#	Article	IF	CITATIONS
37	Soluble forms of intercellular adhesion molecule-1 in insulin-dependent diabetes mellitus. Lancet, The, 1994, 343, 1590-1593.	13.7	89
38	Acute Onset of Type I Diabetes Mellitus after Severe Echovirus 9 Infection: Putative Pathogenic Pathways. Clinical Infectious Diseases, 2000, 31, 1025-1031.	5.8	88
39	Immunological efficacy of heat shock protein 60 peptide DiaPep277TM therapy in clinical type I diabetes. Clinical and Experimental Immunology, 2008, 152, 488-497.	2.6	88
40	T-Cell Reactivity to β-Cell Membrane Antigens Associated With β-Cell Destruction in IDDM. Diabetes, 1995, 44, 278-283.	0.6	87
41	Animal models have little to teach us about Type 1 diabetes: 1. In support of this proposal. Diabetologia, 2004, 47, 1650-1656.	6.3	86
42	C-Peptide Decline in Type 1 Diabetes Has Two Phases: An Initial Exponential Fall and a Subsequent Stable Phase. Diabetes Care, 2018, 41, 1486-1492.	8.6	81
43	HLA and smoking in prediction and prognosis of small cell lung cancer in autoimmune Lambert–Eaton myasthenic syndrome. Journal of Neuroimmunology, 2005, 159, 230-237.	2.3	80
44	Diabetogenic T lymphocytes in human Type 1 diabetes. Current Opinion in Immunology, 2011, 23, 746-753.	5.5	79
45	Therapy with the hsp60 peptide DiaPep277â,,¢ in C-peptide positive type 1 diabetes patients. Diabetes/Metabolism Research and Reviews, 2007, 23, 269-275.	4.0	77
46	Report of the Key Opinion Leaders Meeting on Stem Cell-derived Beta Cells. Transplantation, 2018, 102, 1223-1229.	1.0	72
47	Vitamin D controls the capacity of human dendritic cells to induce functional regulatory T cells by regulation of glucose metabolism. Journal of Steroid Biochemistry and Molecular Biology, 2019, 187, 134-145.	2.5	71
48	HLA-associated inverse correlation between T cell and antibody responsiveness to islet autoantigen in recent-onset insulin-dependent diabetes mellitus. European Journal of Immunology, 1996, 26, 1285-1289.	2.9	67
49	Type 1 diabetes induction in humanized mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10954-10959.	7.1	67
50	Discovery of low-affinity preproinsulin epitopes and detection of autoreactive CD8 T-cells using combinatorial MHC multimers. Journal of Autoimmunity, 2011, 37, 151-159.	6.5	66
51	Immunological Balance Is Associated with Clinical Outcome after Autologous Hematopoietic Stem Cell Transplantation in Type 1 Diabetes. Frontiers in Immunology, 2017, 8, 167.	4.8	65
52	Pro- and anti-inflammatory cytokine production by autoimmune T cells against preproinsulin in HLA-DRB1*04, DQ8 Type 1 diabetes. Diabetologia, 2004, 47, 439-450.	6.3	62
53	Oral butyrate does not affect innate immunity and islet autoimmunity in individuals with longstanding type 1 diabetes: a randomised controlled trial. Diabetologia, 2020, 63, 597-610.	6.3	60
54	Surrogate end points in the design of immunotherapy trials: emerging lessons from type 1 diabetes. Nature Reviews Immunology, 2010, 10, 145-152.	22.7	59

#	Article	IF	CITATIONS
55	Understanding and preventing type 1 diabetes through the unique working model of TrialNet. Diabetologia, 2017, 60, 2139-2147.	6.3	59
56	Abnormal islet sphingolipid metabolism in type 1 diabetes. Diabetologia, 2018, 61, 1650-1661.	6.3	56
57	Safety and feasibility of intradermal injection with tolerogenic dendritic cells pulsed with proinsulin peptide—for type 1 diabetes. Lancet Diabetes and Endocrinology,the, 2020, 8, 470-472.	11.4	55
58	Activated Mesenchymal Stromal Cells Process and Present Antigens Regulating Adaptive Immunity. Frontiers in Immunology, 2019, 10, 694.	4.8	53
59	Proinsulin multi-peptide immunotherapy induces antigen-specific regulatory T cells and limits autoimmunity in a humanized model. Clinical and Experimental Immunology, 2015, 182, 251-260.	2.6	52
60	The problems and promises of research into human immunology and autoimmune disease. Nature Medicine, 2012, 18, 48-53.	30.7	51
61	Immunogenicity of human embryonic stem cell-derived beta cells. Diabetologia, 2017, 60, 126-133.	6.3	49
62	Standardizing T-Cell Biomarkers in Type 1 Diabetes: Challenges and Recent Advances. Diabetes, 2019, 68, 1366-1379.	0.6	49
63	Accumulation of autoreactive effector T cells and allo-specific regulatory T cells in the pancreas allograft of a type 1 diabetic recipient. Diabetologia, 2009, 52, 494-503.	6.3	44
64	Conjugation of a peptide autoantigen to gold nanoparticles for intradermally administered antigen specific immunotherapy. International Journal of Pharmaceutics, 2019, 562, 303-312.	5.2	44
65	Islet stress, degradation and autoimmunity. Diabetes, Obesity and Metabolism, 2018, 20, 88-94.	4.4	43
66	Human islet T cells are highly reactive to preproinsulin in type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	42
67	CD8 T cell autoreactivity to preproinsulin epitopes with very low human leucocyte antigen class I binding affinity. Clinical and Experimental Immunology, 2012, 170, 57-65.	2.6	41
68	Association between maternal gluten intake and type 1 diabetes in offspring: national prospective cohort study in Denmark. BMJ: British Medical Journal, 2018, 362, k3547.	2.3	41
69	Human T cell clones with specificity for insulinoma cell antigens. European Journal of Immunology, 1989, 19, 213-216.	2.9	40
70	A roadmap of the generation of neoantigens as targets of the immune system in type 1 diabetes. Current Opinion in Immunology, 2016, 43, 67-73.	5.5	40
71	Molecular Mimicry in Type 1 Diabetes. Annals of the New York Academy of Sciences, 2002, 958, 163-165.	3.8	39
72	Detection of Autoreactive T Cells in Type 1 Diabetes Using Coded Autoantigens and an Immunoglobulin-Free Cytokine ELISPOT Assay: Report from the Fourth Immunology of Diabetes Society T Cell Workshop. Annals of the New York Academy of Sciences, 2004, 1037, 10-15.	3.8	38

#	Article	IF	CITATIONS
73	Human islets and dendritic cells generate post-translationally modified islet autoantigens. Clinical and Experimental Immunology, 2016, 185, 133-140.	2.6	38
74	Heterogeneity of circulating CD8 T-cells specific to islet, neo-antigen and virus in patients with type 1 diabetes mellitus. PLoS ONE, 2018, 13, e0200818.	2.5	38
75	Discovery of a Selective Islet Peptidome Presented by the Highest-Risk HLA-DQ8 <i>trans</i> Molecule. Diabetes, 2016, 65, 732-741.	0.6	35
76	Survival of autoreactive T lymphocytes by microRNA-mediated regulation of apoptosis through TRAIL and Fas in type 1 diabetes. Genes and Immunity, 2016, 17, 342-348.	4.1	32
77	The elusive role of B lymphocytes and islet autoantibodies in (human) type 1 diabetes. Diabetologia, 2017, 60, 1185-1189.	6.3	32
78	Translating Mechanism of Regulatory Action of Tolerogenic Dendritic Cells to Monitoring Endpoints in Clinical Trials. Frontiers in Immunology, 2017, 8, 1598.	4.8	32
79	Persistent Câ€peptide is associated with reduced hypoglycaemia but not HbA _{1c} in adults with longstanding Type 1 diabetes: evidence for lack of intensive treatment in UK clinical practice?. Diabetic Medicine, 2019, 36, 1092-1099.	2.3	32
80	Quantitative determination of TCR cross-reactivity using peptide libraries and protein databases. European Journal of Immunology, 1999, 29, 2385-2391.	2.9	31
81	Impact of disease heterogeneity on treatment efficacy of immunotherapy in Type 1 diabetes: different shades of gray. Immunotherapy, 2015, 7, 163-174.	2.0	30
82	Post-transcriptional control of candidate risk genes for type 1 diabetes by rare genetic variants. Genes and Immunity, 2013, 14, 58-61.	4.1	29
83	β-Cell Stress Shapes CTL Immune Recognition of Preproinsulin Signal Peptide by Posttranscriptional Regulation of Endoplasmic Reticulum Aminopeptidase 1. Diabetes, 2020, 69, 670-680.	0.6	29
84	Â-Cell Antigen-Specific Lysis of Macrophages by CD4 T-Cell Clones From Newly Diagnosed IDDM Patient: A Putative Mechanism of T-Cell-Mediated Autoimmune Islet Cell Destruction. Diabetes, 1992, 41, 1380-1384.	0.6	27
85	Proteasomal Degradation of Proinsulin Requires Derlin-2, HRD1 and p97. PLoS ONE, 2015, 10, e0128206.	2.5	27
86	Islet Allotransplantation in the Bone Marrow of Patients With Type 1 Diabetes: A Pilot Randomized Trial. Transplantation, 2019, 103, 839-851.	1.0	27
87	A randomised, single-blind, placebo-controlled, dose-finding safety and tolerability study of the anti-CD3 monoclonal antibody otelixizumab in new-onset type 1 diabetes. Diabetologia, 2021, 64, 313-324.	6.3	27
88	Where, How, and When: Positioning Posttranslational Modification Within Type 1 Diabetes Pathogenesis. Current Diabetes Reports, 2016, 16, 63.	4.2	26
89	Variation in the CTLA4 3′UTR has phenotypic consequences for autoreactive T cells and associates with genetic risk for type 1 diabetes. Genes and Immunity, 2016, 17, 75-78.	4.1	26
90	Dendritic Cells Guide Islet Autoimmunity through a Restricted and Uniquely Processed Peptidome Presented by High-Risk HLA-DR. Journal of Immunology, 2016, 196, 3253-3263.	0.8	24

#	Article	IF	CITATIONS
91	Inducing tissue specific tolerance in autoimmune disease with tolerogenic dendritic cells. Clinical and Experimental Rheumatology, 2015, 33, S97-103.	0.8	24
92	Neoantigens and Microenvironment in Type 1 Diabetes: Lessons from Antitumor Immunity. Trends in Endocrinology and Metabolism, 2016, 27, 353-362.	7.1	22
93	Combinatorial detection of autoreactive CD8+ T cells with HLA-A2 multimers: a multi-centre study by the Immunology of Diabetes Society T Cell Workshop. Diabetologia, 2018, 61, 658-670.	6.3	22
94	Clinical and genetic correlates of islet-autoimmune signatures in juvenile-onset type 1 diabetes. Diabetologia, 2020, 63, 351-361.	6.3	22
95	Autoreactive T cells in endocrine/organ-specific autoimmunity: why has progress been so slow?. Seminars in Immunopathology, 2002, 24, 261-271.	4.0	21
96	Islet Autoreactive CD8 T-cells in Type 1 Diabetes. Diabetes, 2008, 57, 1156-1156.	0.6	21
97	Modulation of autoimmunity to beta-cell antigens by proteases. Diabetologia, 2002, 45, 686-692.	6.3	20
98	Epitope Stealing as a Mechanism of Dominant Protection by HLA-DQ6 in Type 1 Diabetes. Diabetes, 2019, 68, 787-795.	0.6	20
99	HLA-DRB1*0403 is associated with dominant protection against IDDM in the general Dutch population and subjects with high-risk DQA1*0301-DQB1*0302/DQA1*0501-DQB1*0201 genotype. Tissue Antigens, 1999, 54, 88-90.	1.0	19
100	Innate and adaptive immunity to human beta cell lines: implications for beta cell therapy. Diabetologia, 2016, 59, 170-175.	6.3	19
101	Anti–PD-1 Therapy–Associated Type 1 Diabetes in a Pediatric Patient With Relapsed Classical Hodgkin Lymphoma. Diabetes Care, 2020, 43, 2293-2295.	8.6	19
102	Image-Based Machine Learning Algorithms for Disease Characterization in the Human Type 1 Diabetes Pancreas. American Journal of Pathology, 2021, 191, 454-462.	3.8	19
103	Islet-Resident Dendritic Cells and Macrophages in Type 1 Diabetes: In Search of Bigfoot's Print. Frontiers in Endocrinology, 2021, 12, 666795.	3.5	19
104	β-Cells, Autoimmunity, and the Innate Immune System: "un Ménage á Troisâ€ ? . Diabetes, 2013, 62, 1821-	1822.	16
105	Development of preclinical and clinical models for immune-related adverse events following checkpoint immunotherapy: a perspective from SITC and AACR. , 2021, 9, e002627.		15
106	Syntaxin 4 Expression in Pancreatic β-Cells Promotes Islet Function and Protects Functional β-Cell Mass. Diabetes, 2018, 67, 2626-2639.	0.6	14
107	Molecular mimicry in type 1 diabetes: immune cross-reactivity between islet autoantigen and human cytomegalovirus but not Coxsackie virus. Annals of the New York Academy of Sciences, 2002, 958, 163-5.	3.8	14
108	From Disease and Patient Heterogeneity to Precision Medicine in Type 1 Diabetes. Frontiers in Medicine, 0, 9, .	2.6	13

#	Article	IF	CITATIONS
109	Serum Cytokines as Biomarkers in Islet Cell Transplantation for Type 1 Diabetes. PLoS ONE, 2016, 11, e0146649.	2.5	12
110	Relapsing/remitting type 1 diabetes. Diabetologia, 2017, 60, 2252-2255.	6.3	12
111	A Future for Autologous Hematopoietic Stem Cell Transplantation in Type 1 Diabetes. Frontiers in Immunology, 2018, 9, 690.	4.8	12
112	1,25-dihydroxyvitamin D3 induces stable and reproducible therapeutic tolerogenic dendritic cells with specific epigenetic modifications. Cytotherapy, 2021, 23, 242-255.	0.7	12
113	Breaking and restoring immune tolerance to pancreatic beta-cells in type 1 diabetes. Current Opinion in Endocrinology, Diabetes and Obesity, 2021, Publish Ahead of Print, 397-403.	2.3	12
114	Defining a cure for type 1 diabetes: a call to action. Lancet Diabetes and Endocrinology,the, 2021, 9, 553-555.	11.4	12
115	<i>HLA-A*24</i> Carrier Status and Autoantibody Surges Posttransplantation Associate With Poor Functional Outcome in Recipients of an Islet Allograft. Diabetes Care, 2016, 39, 1060-1064.	8.6	11
116	Bioluminescent reporter assay for monitoring ER stress in human beta cells. Scientific Reports, 2018, 8, 17738.	3.3	10
117	Long RNA Sequencing and Ribosome Profiling of Inflamed β-Cells Reveal an Extensive Translatome Landscape. Diabetes, 2021, 70, 2299-2312.	0.6	10
118	Function and composition of pancreatic islet cell implants in omentum of type 1 diabetes patients. American Journal of Transplantation, 2022, 22, 927-936.	4.7	10
119	New hope for immune intervention therapy in type 1 diabetes. Lancet, The, 2011, 378, 376-378.	13.7	9
120	Predictive Factors of Allosensitization After Immunosuppressant Withdrawal in Recipients of Long-Term Cultured Islet Cell Grafts. Transplantation, 2013, 96, 162-169.	1.0	9
121	A viral link for type 1 diabetes. Nature Medicine, 2019, 25, 1816-1818.	30.7	9
122	Negative selection of human T cells recognizing a naturally-expressed tissue-restricted antigen in the human thymus. Journal of Translational Autoimmunity, 2020, 3, 100061.	4.0	9
123	Functional Impact of Risk Gene Variants on the Autoimmune Responses in Type 1 Diabetes. Frontiers in Immunology, 2022, 13, .	4.8	9
124	Improving Clinical Islet Transplantation Outcomes. Diabetes Care, 2020, 43, 698-700.	8.6	8
125	Intra-pancreatic tissue-derived mesenchymal stromal cells: a promising therapeutic potential with anti-inflammatory and pro-angiogenic profiles. Stem Cell Research and Therapy, 2019, 10, 322.	5.5	7
126	Multidimensional analyses of proinsulin peptide-specific regulatory T cells induced by tolerogenic dendritic cells. Journal of Autoimmunity, 2020, 107, 102361.	6.5	7

#	Article	IF	CITATIONS
127	Improving the Prediction of Type 1 Diabetes Across Ancestries. Diabetes Care, 2022, 45, e48-e50.	8.6	7
128	Navigating diabetes-related immune epitope data: re-sources and tools provided by the Immune Epitope Da-tabase (IEDB). Immunome Research, 2013, 9, .	0.1	6
129	T-Cell Reactivity Beta-Cell Antigens in Human Insulin-Dependent (Type 1) Diabetes Mellitus: Implications for Diagnosis and Therapy. Clinical Reviews in Allergy and Immunology, 2000, 19, 265-276.	6.5	3
130	Immune intervention therapy in type 1 diabetes: safety first. Lancet Diabetes and Endocrinology,the, 2013, 1, 263-265.	11.4	3
131	Syntaxin 4 enrichment in \hat{l}^2 -cells prevents conversion to autoimmune diabetes in non-obese diabetic (NOD) mice. Diabetes, 2021, 70, db210170.	0.6	3
132	Immune Markers of Disease and Therapeutic Intervention in Type 1 Diabetes. Novartis Foundation Symposium, 2008, 292, 159-173.	1.1	2
133	Primary prevention for type 1 diabetes mellitus?. Nature Reviews Endocrinology, 2015, 11, 451-452.	9.6	2
134	Multiple autoantibodies at onset do not accurately predict long-term pancreatic beta-cell fate in a 13-year-old obese child with immediate insulin-requiring diabetes. Diabetes and Metabolism, 2016, 42, 69-70.	2.9	2
135	There Is Something About Insulin Granules. Diabetes, 2020, 69, 2575-2577.	0.6	2
136	Insulitis Revisited. Diabetes, 2016, 65, 545-547.	0.6	1
137	Vitamin D receptor polymorphisms and growth until adulthood after very premature birth. Journal of Bone and Mineral Metabolism, 2016, 34, 564-570.	2.7	1
138	SLC30A8 polymorphism and BMI complement HLA-A*24 as risk factors for poor graft function in islet allograft recipients. Diabetologia, 2018, 61, 1623-1632.	6.3	1
139	GPA33 is expressed on multiple human blood cell types and distinguishes CD4 ⁺ central memory T cells with and without effector function. European Journal of Immunology, 2021, 51, 1377-1389.	2.9	1
140	Quantitative determination of TCR cross-reactivity using peptide libraries and protein databases. European Journal of Immunology, 1999, 29, 2385-2391.	2.9	1
141	Chronic marijuana usage by human pancreas donors is associated with impaired islet function. PLoS ONE, 2021, 16, e0258434.	2.5	1
142	Molecular mimicry in autoimmune neurological disease after viral infection. Current Medicinal Chemistry, 2003, 10, 1939-43.	2.4	1
143	Congenital beta cell defects are not associated with markers of islet autoimmunity, even in the context of high genetic risk for type 1 diabetes. Diabetologia, 2022, , 1.	6.3	1
144	PS13 - 66. The type 1 diabetes associated HLA-DQ8-transdimer accommodates a unique islet peptide repertoire. Nederlands Tijdschrift Voor Diabetologie, 2011, 9, 135-136.	0.0	0

#	Article	IF	CITATIONS
145	PS13 - 67. Why islet-specific cytotoxic T-cells escape the thymus. Nederlands Tijdschrift Voor Diabetologie, 2011, 9, 136-136.	0.0	0
146	PS2 - 11. Immune signatures defining graft acceptance in clinical islet transplantation. Nederlands Tijdschrift Voor Diabetologie, 2012, 10, 106-106.	0.0	0
147	The contribution of genetic risk factors other than the HLA shared epitope alleles to the genetic variance of rheumatoid arthritis. Annals of the Rheumatic Diseases, 2012, 71, A52.1-A52.	0.9	0
148	Type 1 diabetes: how to resist a fatal attraction. Netherlands Journal of Medicine, 2002, 60, 296-7.	0.5	0