Stuart G Collins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3884733/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioactivities of Glycoalkaloids and Their Aglycones from Solanum Species. Journal of Agricultural and Food Chemistry, 2011, 59, 3454-3484.	5.2	227
2	Taming Hazardous Chemistry in Flow: The Continuous Processing of Diazo and Diazonium Compounds. Chemistry - A European Journal, 2015, 21, 2298-2308.	3.3	163
3	ReactNMR and ReactIR as Reaction Monitoring and Mechanistic Elucidation Tools: The NCS Mediated Cascade Reaction of α-Thioamides to α-Thio-l²-chloroacrylamides. Journal of Organic Chemistry, 2011, 76, 9630-9640.	3.2	64
4	Anti-inflammatory properties of potato glycoalkaloids in stimulated Jurkat and Raw 264.7 mouse macrophages. Life Sciences, 2013, 92, 775-782.	4.3	61
5	Taming tosyl azide: the development of a scalable continuous diazo transfer process. Organic and Biomolecular Chemistry, 2016, 14, 3423-3431.	2.8	40
6	Phenylalanine dehydrogenase mutants: Efficient biocatalysts for synthesis of non-natural phenylalanine derivatives. Journal of Biotechnology, 2007, 128, 408-411.	3.8	29
7	Exploiting the Continuous in situ Generation of Mesyl Azide for Use in a Telescoped Process. European Journal of Organic Chemistry, 2017, 2017, 6533-6539.	2.4	21
8	Generation, Reactivity and Uses of Sulfines in Organic Synthesis. European Journal of Organic Chemistry, 2016, 2016, 1630-1650.	2.4	20
9	Matrix Isolation and Photochemistry of α-Diazo Sulfoxides: Formation of α-Oxo Sulfine as an Intermediate. European Journal of Organic Chemistry, 2000, 2000, 3329-3335.	2.4	17
10	Addition-substitution reactions of 2-thio-3-chloroacrylamides with carbon, nitrogen, oxygen, sulfur and selenium nucleophiles. Organic and Biomolecular Chemistry, 2011, 9, 2452.	2.8	16
11	Photochemistry ofcis-3-Diazo-5,6-dimethyl-1,4-oxathian-2-oneS-Oxide in Argon Matrices. European Journal of Organic Chemistry, 2006, 2006, 2918-2924.	2.4	15
12	Design and synthesis of stable α-diazo-β-oxo sulfoxides. Organic and Biomolecular Chemistry, 2013, 11, 1706.	2.8	15
13	Synthesis of Cyclic α-Diazo-β-keto Sulfoxides in Batch and Continuous Flow. Journal of Organic Chemistry, 2017, 82, 3666-3679.	3.2	14
14	Heteroâ€Wolff Rearrangement of an αâ€Sulfinyl Carbene: Thermally Activated Intersystem Crossing of the Lowest Excited Triplet State of a Groundâ€State Singlet Carbene. European Journal of Organic Chemistry, 2014, 2014, 2297-2304.	2.4	13
15	Studies towards a greener diazo transfer methodology. RSC Advances, 2016, 6, 31202-31209.	3.6	13
	Solubility Measurement and Thermodynamic Modeling of		

STUART G COLLINS

#	Article	IF	CITATIONS
19	Synthesis of novel 24-amino-25,26,27-trinorlanost-8-enes: Cytotoxic and apoptotic potential in U937 cells. Bioorganic and Medicinal Chemistry, 2015, 23, 2270-2280.	3.0	8
20	Development of a continuous process for α-thio-β-chloroacrylamide synthesis with enhanced control of a cascade transformation. Beilstein Journal of Organic Chemistry, 2016, 12, 2511-2522.	2.2	8
21	Synthesis and use of a cost-effective, aqueous soluble diazo transfer reagent – m-carboxybenzenesulfonyl azide. Tetrahedron Letters, 2019, 60, 35-39.	1.4	7
22	Chemoenzymatic methods in the asymmetric synthesis of $\hat{I}\pm$ -diazosulfoxides. Arkivoc, 2003, 2003, 96-109.	0.5	7
23	Generation of Tosyl Azide in Continuous Flow Using an Azide Resin, and Telescoping with Diazo Transfer and Rhodium Acetate-Catalyzed O–H Insertion. Organic Process Research and Development, 2021, 25, 2772-2785.	2.7	7
24	Delivering enhanced efficiency in the synthesis of α-diazosulfoxides by exploiting the process control enabled in flow. Journal of Flow Chemistry, 2016, 6, 226-233.	1.9	5
25	Synthesis of 1,2,5-oxathiazole- <i>S</i> -oxides by 1,3-dipolar cycloadditions of nitrile oxides to α-oxo sulfines. Organic and Biomolecular Chemistry, 2019, 17, 622-638.	2.8	4
26	Telescoped diazo transfer and rhodium-catalysed S–H insertion in continuous flow. Tetrahedron Letters, 2021, 83, 153438.	1.4	4
27	Scale-up and Optimization of a Continuous Flow Synthesis of an α-Thio-β-chloroacrylamide. Organic Process Research and Development, 2020, 24, 1978-1987.	2.7	3
28	Synthesis and reactivity of α-sulfenyl-β-chloroenones, including oxidation and Stille cross-coupling to form chalcone derivatives. Tetrahedron, 2021, 88, 132091.	1.9	3
29	Exploiting Continuous Processing for Challenging Diazo Transfer and Telescoped Copper-Catalyzed Asymmetric Transformations. Journal of Organic Chemistry, 2021, 86, 13955-13982.	3.2	3
30	Microwave-Assisted Reactions of α-Diazosulfoxides to Form α-Oxosulfines. Synlett, 2008, 2008, 659-662.	1.8	2
31	Mechanistic Study of In Situ Generation and Use of Methanesulfonyl Azide as a Diazo Transfer Reagent with Realâ€Time Monitoring by FlowNMR. European Journal of Organic Chemistry, 2019, 2019, 3575-3580.	2.4	2
32	Identification of an Esterase Isolated Using Metagenomic Technology which Displays an Unusual Substrate Scope and its Characterisation as an Enantioselective Biocatalyst. Advanced Synthesis and Catalysis, 2019, 361, 2466-2474.	4.3	2
33	Exploring the synthetic potential of a marine transaminase including discrimination at a remote stereocentre. Organic and Biomolecular Chemistry, 2021, 19, 188-198.	2.8	О