## Grozdana Bogdanic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3884692/publications.pdf

Version: 2024-02-01

840119 752256 48 487 11 20 g-index citations h-index papers 50 50 50 272 docs citations times ranked citing authors all docs

| #  | Article                                                                                                                                                                                                                                                          | lF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Studies on the influence of long chain acrylic esters polymers with polar monomers as crude oil flow improver additives. Fuel, 2008, 87, 2943-2950.                                                                                                              | 3.4 | 102       |
| 2  | Revision of the Group-Contribution Flory Equation of State for Phase Equilibria Calculations in Mixtures with Polymers. 1. Prediction of Vapor-Liquid Equilibria for Polymer Solutions. Industrial & Engineering Chemistry Research, 1994, 33, 1331-1340.        | 1.8 | 70        |
| 3  | A segmental interaction model for liquid–liquid equilibrium calculations for polymer solutions. Fluid Phase Equilibria, 2000, 173, 241-252.                                                                                                                      | 1.4 | 35        |
| 4  | Vapour–liquid and chemical equilibria in the ethyl ethanoate+ethanol+propyl ethanoate+propanol system accompanied with transesterification reaction. Fluid Phase Equilibria, 2012, 328, 61-68.                                                                   | 1.4 | 19        |
| 5  | Revision of the Group-Contribution-Flory Equation of State for Phase Equilibria Calculations in<br>Mixtures with Polymers. 2. Prediction of Liquid-Liquid Equilibria for Polymer Solutions. Industrial<br>& Engineering Chemistry Research, 1995, 34, 1835-1841. | 1.8 | 17        |
| 6  | Phase Behavior and Miscibility in Binary Blends Containing Polymers and Copolymers of Styrene, of 2,6-Dimethyl-1,4-Phenylene Oxide, and of Their Derivatives. Journal of Physical and Chemical Reference Data, 1999, 28, 851-868.                                | 1.9 | 17        |
| 7  | Miscibility in blends of sulfonylated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) with homopolymers of halogen-substituted styrene derivatives. Polymer, 1993, 34, 1449-1453.                                                                                  | 1.8 | 15        |
| 8  | Prediction of Vapor-Liquid Equilibria for Mixtures with Copolymers. Industrial & Engineering Chemistry Research, 1995, 34, 324-331.                                                                                                                              | 1.8 | 15        |
| 9  | Circulation micro-ebulliometer for determination of pressure above mixtures containing solvent and non-volatile component. Fluid Phase Equilibria, 2010, 297, 142-148.                                                                                           | 1.4 | 14        |
| 10 | Vapour–liquid equilibria in binary and ternary systems composed of 2,3-dimethylbutane, diisopropyl ether, and 3-methyl-2-butanone at 313.15, 323.15 and 313.15K. Fluid Phase Equilibria, 2013, 344, 59-64.                                                       | 1.4 | 13        |
| 11 | FREE RADICAL-INITIATED COPOLYMERIZATION OF 2,6-DICHLOROSTYRENE WITH MALEIMIDE, N-METHYLMALEIMIDE, AND N-PHENYLMALEIMIDE. Journal of Macromolecular Science - Pure and Applied Chemistry, 2000, 37, 513-524.                                                      | 1.2 | 12        |
| 12 | Phase behavior in copolymer blends of poly (p-chlorostyrene-co-o-chlorostyrene) and phenylsulfonylated poly (2,6-dimethyl-1,4-phenylene oxide). Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 1079-1087.                                        | 2.4 | 10        |
| 13 | Flow improver additives for gas condensate. Fuel, 2007, 86, 1409-1416.                                                                                                                                                                                           | 3.4 | 9         |
| 14 | Vaporâ^'Liquid Equilibrium in Diluted Polymer + Solvent Systems. Journal of Chemical & Data, 2011, 56, 1080-1083.                                                                                                                                                | 1.0 | 9         |
| 15 | Miscibility in blends of sulfonylated poly(2,6-dimethyl-1,4-phenylene oxide) and poly(p-bromostyrene-co-o-bromostyrene). Journal of Applied Polymer Science, 1994, 52, 1499-1503.                                                                                | 1.3 | 8         |
| 16 | Group contribution methods for estimating the properties of polymer systems. Hemijska Industrija, 2006, 60, 287-305.                                                                                                                                             | 0.3 | 8         |
| 17 | Investigation of the decomposition of copolymers of styrene and maleic anhydride using thermogravimetric analysis. Thermochimica Acta, 1990, 171, 39-47.                                                                                                         | 1.2 | 7         |
| 18 | A segmental interaction model for liquid-liquid equilibria correlation and prediction. Polymer Bulletin, 1998, 40, 117-123.                                                                                                                                      | 1.7 | 7         |

| #  | Article                                                                                                                                                                                                                                                                                        | IF                | Citations        |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|
| 19 | Miscibility behaviour of sulfonylated poly(2,6-dimethyl-1,4-phenylene oxide) copolymers in the blends with poly(styrene-co-maleic anhydride) and with poly( $\hat{l}_{\pm}$ -methylstyrene-co-maleic anhydride). Polymer Bulletin, 1992, 28, 473-479.                                          | 1.7               | 6                |
| 20 | Miscibility in blends of phenylsulfonylated poly(2,6-dimethyl-1,4-phenylene oxide) and poly(p-fluorostyrene-co-o-fluorostyrene). Polymer, 1994, 35, 3055-3059.                                                                                                                                 | 1.8               | 6                |
| 21 | Phase behaviour in copolymer blends of phenylsulphonylated poly(2,6-dimethyl-1,4-phenylene oxide) and poly(o-fluorostyrene-co-p(o)-chlorostyrene). Thermochimica Acta, 1995, 264, 125-135.                                                                                                     | 1.2               | 6                |
| 22 | Synthesis of Nanoporous Crosslinked Poly(Acrylâ€Nâ€cyclohexyl Amideâ€coâ€Ethylene Glycol Dimethacrylate) by Thermal Degradation of Poly(Acrylâ€N,N′â€dicyclohexylureaâ€coâ€Ethylene Glycol Dimethacrylate). Journal of Macromolecular Science - Pure and Applied Chemistry, 2003, 40, 747-754. | 1.2               | 6                |
| 23 | Separation of Cyclohexylisocyanate from the Crosslinked Copolymers of N-Acryl-dicyclohexylurea with Ethylene Glycol Dimethacrylate or Divinyl Benzene. Journal of Macromolecular Science - Pure and Applied Chemistry, 2003, 40, 81-85.                                                        | 1.2               | 6                |
| 24 | Vapour–Liquid Equilibria in the Polystyrene + Toluene System at Higher Concentrations of Solvent.<br>Chemical and Biochemical Engineering Quarterly, 2015, 29, 1-4.                                                                                                                            | 0.5               | 6                |
| 25 | The FV-UNIQUAC segmental interaction model for liquid–liquid equilibrium calculations for polymer solutions. Fluid Phase Equilibria, 2001, 191, 49-57.                                                                                                                                         | 1.4               | 5                |
| 26 | Copolymer blends of phenylsulphonylated poly(2,6-dimethyl-1,4-phenylene oxide) and poly(p-fluorostyrene-co-p(o)-chlorostyrene). Thermochimica Acta, 1996, 275, 259-268.                                                                                                                        | 1.2               | 4                |
| 27 | Miscibility and phase separation study of blends of random copolymers of poly[ortho(para)-fluorostyrene-co-ortho(para)-bromostyrene] with phenylsulphonylated poly(2,6-dimethyl-1,4-phenylene oxide) copolymers by thermal methods. Thermochimica Acta, 1996, 285, 141-154.                    | 1.2               | 4                |
| 28 | Preparation of Nanoporous Crosslinked Poly(Methacrylâ€Nâ€eyclohexylamideâ€eoâ€ethylene Glycol) Tj ETQq0 0 0                                                                                                                                                                                    | ) rgBT /Ov<br>1.2 | erlock 10 T<br>4 |
| 29 | Vapour-liquid equilibria in water + poly(ethylene glycol) systems: New experiments and cumulative thermodynamic processing of all data. Journal of Chemical Thermodynamics, 2020, 140, 105901.                                                                                                 | 1.0               | 4                |
| 30 | Vapor-liquid and liquid-liquid equilibria in the waterÂ+Âpoly(propylene glycol) system. Journal of Molecular Liquids, 2021, 337, 116336.                                                                                                                                                       | 2.3               | 4                |
| 31 | DSC study of the miscibility of PPO and sulphonylated PPO in blends with alternating copolymers of $\hat{l}^2$ -substituted styrene derivatives with maleic anhydride and with N-substituted maleimides. Thermochimica Acta, 1994, 233, 75-86.                                                 | 1.2               | 3                |
| 32 | Estimation of the segmental interaction parameters of polymer blends based on styrene and 2,6-dimethyl-1,4-phenylene oxide derivatives. Fluid Phase Equilibria, 1997, 139, 277-294.                                                                                                            | 1.4               | 3                |
| 33 | Miscibility-immiscibility behaviour in blends of phenylsulfonylated poly(2,6-dimethyl-1,4-phenylene) Tj ETQq1 1 0.7                                                                                                                                                                            | 84314 rgl<br>1.2  | BŢ /Overloc      |
| 34 | Phase behaviour in blends of poly[styrene-co-ortho(para)-bromostyrene] and phenylsulfonylated poly(2,6-dimethyl-1,4-phenylene oxide) copolymers. Polymer, 1998, 39, 2847-2850.                                                                                                                 | 1.8               | 3                |
| 35 | COPOLYMERIZATION OF N-ACRYL-N,N′-DICYCLOHEXYLUREA AND N-METHACRYL-N,N′-DICYCLOHEXYLUREA WITH STYRENE. Journal of Macromolecular Science - Pure and Applied Chemistry, 2001, 38, 839-850.                                                                                                       | 1.2               | 3                |
| 36 | Nanoporous Crosslinked Copolymers Prepared by Thermal Degradation of Poly(Methacrylâ€N,N′â€diisopropylureaâ€coâ€ethylene Glycol Dimethacrylate). Journal of Macromolecular Science - Pure and Applied Chemistry, 2004, 41, 1087-1094.                                                          | 1.2               | 3                |

| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Vapour–liquid equilibria in the polymer+solvent system containing lower concentrations of solute at normal or reduced pressures. Fluid Phase Equilibria, 2013, 358, 301-303.                                                                              | 1.4 | 3         |
| 38 | Ebulliometric measurement of total pressure in the binary polystyreneÂ+Âbutan-2-one system. Fluid Phase Equilibria, 2016, 424, 41-43.                                                                                                                     | 1.4 | 3         |
| 39 | Simple Apparatus for the Measurement of Total Pressure of Polymerâ€Solvent Mixtures. Chemical Engineering and Technology, 2017, 40, 991-996.                                                                                                              | 0.9 | 3         |
| 40 | An improved apparatus for vapour–liquid equilibria measurement in polymerÂ+ solvent systems at higher temperatures: A study of the waterÂ+ poly(ethylene glycol) system. Fluid Phase Equilibria, 2017, 454, 111-115.                                      | 1.4 | 3         |
| 41 | POLYMERIZATION OF N(p-PHENOXY-PHENYL)ACRYLAMIDE AND COPOLYMERS WITH STYRENE. Journal of Macromolecular Science - Pure and Applied Chemistry, 2001, 38, 1075-1086.                                                                                         | 1.2 | 2         |
| 42 | FREE-RADICAL-INITIATED COPOLYMERIZATION OF 2-CHLOROSTYRENE, 4-CHLOROSTYRENE, AND 2,6-DICHLOROSTYRENE WITH MALEIC ANHYDRIDE. Journal of Macromolecular Science - Pure and Applied Chemistry, 2001, 38, 253-261.                                            | 1.2 | 2         |
| 43 | Structural Differences Between Copolymers of Acryl―and Methacrylâ€dicyclohexylurea with Ethylene<br>Glycol Dimethacrylate and their Thermal Degradation Products. Journal of Macromolecular Science -<br>Pure and Applied Chemistry, 2005, 42, 1621-1626. | 1.2 | 2         |
| 44 | Synthesis of Nâ€Acrylâ€N,N′â€diâ€tertâ€Butylurea and Copolymerization with Ethylene Glycol Dimethacrylate. Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 879-887.                                                             | 1.2 | 2         |
| 45 | Pearson-type I Distribution Function for Polydisperse Polymer Systems. Molar Mass Distributionâ€,§.<br>Journal of Chemical Information and Computer Sciences, 2003, 43, 880-884.                                                                          | 2.8 | 1         |
| 46 | Freeâ€Radical Initiated Polymerization of Nâ€methacrylâ€N,N′â€diisopropylurea with Styrene. Journal of Macromolecular Science - Pure and Applied Chemistry, 2005, 42, 535-542.                                                                            | 1.2 | 0         |
| 47 | Copolymerization of Nâ€ŧertâ€Butylacrylamide with Ethylene Glycol Dimethacrylate. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 721-725.                                                                                      | 1.2 | 0         |
| 48 | Experiments and Modelling of Liquid–liquid Equilibria in the Mineral Oil + N,N-dimethylformamide System. Procedia Engineering, 2012, 42, 721-725.                                                                                                         | 1.2 | 0         |