## Karnam S Murthy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3884531/publications.pdf Version: 2024-02-01



Κλάνιλα ς Μιίστην

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Decreased smooth muscle function, peristaltic activity, and gastrointestinal transit in dystrophic ( <i>mdx</i> ) mice. Neurogastroenterology and Motility, 2021, 33, e13968.         | 1.6 | 13        |
| 2  | COVID-19 and gastrointestinal system: A brief review. Biomedical Journal, 2021, 44, 245-251.                                                                                          | 1.4 | 11        |
| 3  | Obituary for Dr. Gabriel M. Makhlouf. Neurogastroenterology and Motility, 2021, 33, e14272.                                                                                           | 1.6 | 0         |
| 4  | Expression and function of umami receptors T1R1/T1R3 in gastric smooth muscle.<br>Neurogastroenterology and Motility, 2020, 32, e13737.                                               | 1.6 | 7         |
| 5  | Expression patterns of l-amino acid receptors in the murine STC-1 enteroendocrine cell line. Cell and Tissue Research, 2019, 378, 471-483.                                            | 1.5 | 7         |
| 6  | Muscarinic m2 receptorâ€mediated actin polymerization via PI3 kinase γ and integrinâ€linked kinase in<br>gastric smooth muscle. Neurogastroenterology and Motility, 2019, 31, e13495. | 1.6 | 6         |
| 7  | Identification of expression and function of the glucagon-like peptide-1 receptor in colonic smooth muscle. Peptides, 2019, 112, 48-55.                                               | 1.2 | 15        |
| 8  | Branched Short-Chain Fatty Acid Isovaleric Acid Causes Colonic Smooth Muscle Relaxation via cAMP/PKA Pathway. Digestive Diseases and Sciences, 2019, 64, 1171-1181.                   | 1.1 | 41        |
| 9  | Hydrogen Sulfide Improves Aberrant Gastric Smooth Muscle Function in Duchenne Muscular<br>Dystrophy Mice. FASEB Journal, 2019, 33, 821.8.                                             | 0.2 | 0         |
| 10 | Restoration of Contractile Protein Expression and Colonic Smooth Muscle Function by H 2 S in<br>Duchenne Muscular Dystrophy Mice. FASEB Journal, 2019, 33, 821.5.                     | 0.2 | 0         |
| 11 | Regulation of gastric smooth muscle contraction via Ca2+-dependent and Ca2+-independent actin polymerization. PLoS ONE, 2018, 13, e0209359.                                           | 1.1 | 5         |
| 12 | Inhibition of RhoA/Rho kinase pathway and smooth muscle contraction by hydrogen sulfide.<br>Pharmacology Research and Perspectives, 2017, 5, e00343.                                  | 1.1 | 17        |
| 13 | Augmentation of cGMP/PKG pathway and colonic motility by hydrogen sulfide. American Journal of<br>Physiology - Renal Physiology, 2017, 313, G330-G341.                                | 1.6 | 21        |
| 14 | Regulator of G protein signaling 4 is a novel target of GATA-6 transcription factor. Biochemical and<br>Biophysical Research Communications, 2017, 483, 923-929.                      | 1.0 | 6         |
| 15 | Cyclic-AMP regulates postnatal development of neural and behavioral responses to NaCl in rats. PLoS<br>ONE, 2017, 12, e0171335.                                                       | 1.1 | 4         |
| 16 | Diabetes-induced oxidative stress mediates upregulation of RhoA/Rho kinase pathway and hypercontractility of gastric smooth muscle. PLoS ONE, 2017, 12, e0178574.                     | 1.1 | 20        |
| 17 | Nicotine-Induced Effects on Nicotinic Acetylcholine Receptors (nAChRs), Ca2+ and Brain-Derived<br>Neurotrophic Factor (BDNF) in STC-1 Cells. PLoS ONE, 2016, 11, e0166565.            | 1.1 | 13        |
| 18 | Immune/Inflammatory Response and Hypocontractility of Rabbit Colonic Smooth Muscle After<br>TNBS-Induced Colitis. Digestive Diseases and Sciences, 2016, 61, 1925-1940.               | 1.1 | 9         |

KARNAM S MURTHY

| #  | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Activation of Transmembrane Bile Acid Receptor TGR5 Modulates Pancreatic Islet α Cells to Promote<br>Glucose Homeostasis. Journal of Biological Chemistry, 2016, 291, 6626-6640.                                                                                      | 1.6 | 100       |
| 20 | Cytokine-Induced S-Nitrosylation of Soluble Guanylyl Cyclase and Expression of Phosphodiesterase 1A<br>Contribute to Dysfunction of Longitudinal Smooth Muscle Relaxation. Journal of Pharmacology and<br>Experimental Therapeutics, 2015, 352, 509-518.              | 1.3 | 18        |
| 21 | Inhibition of RhoA-dependent pathway and contraction by endogenous hydrogen sulfide in rabbit<br>gastric smooth muscle cells. American Journal of Physiology - Cell Physiology, 2015, 308, C485-C495.                                                                 | 2.1 | 26        |
| 22 | Noncanonical STAT3 Activation Regulates Excess TGF-β1 and Collagen I Expression in Muscle of Stricturing Crohn's Disease. Journal of Immunology, 2015, 194, 3422-3431.                                                                                                | 0.4 | 93        |
| 23 | Activation of the umami taste receptor (T1R1/T1R3) initiates the peristaltic reflex and pellet propulsion in the distal colon. American Journal of Physiology - Renal Physiology, 2014, 307, G1100-G1107.                                                             | 1.6 | 42        |
| 24 | Cytokine-induced iNOS and ERK1/2 inhibit adenylyl cyclase type 5/6 activity and stimulate<br>phosphodiesterase 4D5 activity in intestinal longitudinal smooth muscle. American Journal of<br>Physiology - Cell Physiology, 2014, 307, C402-C411.                      | 2.1 | 9         |
| 25 | Jun kinase-induced overexpression of leukemia-associated Rho GEF (LARG) mediates sustained<br>hypercontraction of longitudinal smooth muscle in inflammation. American Journal of Physiology -<br>Cell Physiology, 2014, 306, C1129-C1141.                            | 2.1 | 9         |
| 26 | Release of GLP-1 and PYY in response to the activation of G protein-coupled bile acid receptor TGR5 is<br>mediated by Epac/PLC-ε pathway and modulated by endogenous H2S. Frontiers in Physiology, 2014, 5,<br>420.                                                   | 1.3 | 86        |
| 27 | The short chain fatty acids, butyrate and propionate, have differential effects on the motility of the guinea pig colon. Neurogastroenterology and Motility, 2014, 26, 1586-1596.                                                                                     | 1.6 | 100       |
| 28 | Hypercontractility of Intestinal Longitudinal Smooth Muscle Induced by Cytokines Is Mediated by the<br>Nuclear Factor- <i>κ</i> B/AMP-Activated Kinase/Myosin Light Chain Kinase Pathway. Journal of<br>Pharmacology and Experimental Therapeutics, 2014, 350, 89-98. | 1.3 | 20        |
| 29 | Role of various kinases in muscarinic M3 receptor-mediated contraction of longitudinal muscle of rat colon. Journal of Smooth Muscle Research, 2014, 50, 103-119.                                                                                                     | 0.7 | 9         |
| 30 | Differential regulation of muscarinic M <sub>2</sub> and M <sub>3</sub> receptor signaling in gastrointestinal smooth muscle by caveolin-1. American Journal of Physiology - Cell Physiology, 2013, 305, C334-C347.                                                   | 2.1 | 18        |
| 31 | Activation of G protein-coupled bile acid receptor, TGR5, induces smooth muscle relaxation via both<br>Epac- and PKA-mediated inhibition of RhoA/Rho kinase pathway. American Journal of Physiology - Renal<br>Physiology, 2013, 304, G527-G535.                      | 1.6 | 65        |
| 32 | Increased PDE5 activity and decreased Rho kinase and PKC activities in colonic muscle from<br>caveolin-1 <sup>â^'/â''</sup> mice impair the peristaltic reflex and propulsion. American Journal of<br>Physiology - Renal Physiology, 2013, 305, G964-G974.            | 1.6 | 8         |
| 33 | Characterization of Gz oupled Dopamine D3 Receptors in Gastric Smooth Muscle. FASEB Journal, 2012, 26, 1075.22.                                                                                                                                                       | 0.2 | 0         |
| 34 | Proteaseâ€activated receptorâ€2 reduces cycloheximideâ€induced apoptosis in K562 myeloid leukemia cells.<br>FASEB Journal, 2011, 25, lb311.                                                                                                                           | 0.2 | 0         |
| 35 | Pituitary Adenylate Cyclaseâ€Activating Peptide (PACAP) and Substance P (SP) induce the release of<br>Brainâ€Derived Neurotropic Factor (BDNF) from the longitudinal muscle layer of the intestine. FASEB<br>Journal, 2011, 25, 1070.4.                               | 0.2 | 2         |
| 36 | Regulation of RhoAâ€Dependent Sustained Contraction by Caveolinâ€1 in Gastric Smooth Muscle. FASEB<br>Journal, 2011, 25, 1059.5.                                                                                                                                      | 0.2 | 0         |

KARNAM S MURTHY

| #  | Article                                                                                                                                                                                                                         | IF                 | CITATIONS             |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|
| 37 | Differences in the Expression of Multiâ€Drug Resistant Protein 5 (MRP5) and Regulation of cGMP Levels<br>in Phasic and Tonic Smooth Muscles. FASEB Journal, 2011, 25, 1059.4.                                                   | 0.2                | 0                     |
| 38 | Agonistâ€Induced Rho Kinase and ZIP kinase Activity Levels in Different Regions of the Stomach. FASEB<br>Journal, 2011, 25, 1059.3.                                                                                             | 0.2                | 0                     |
| 39 | Characterization of Melatonin Receptors and Signaling Pathways in Gastrointestinal Smooth Muscle.<br>FASEB Journal, 2010, 24, 1008.3.                                                                                           | 0.2                | Ο                     |
| 40 | Expression of PDE5 and its stimulation by cGMPâ€dependent protein kinase (PKG) determine the<br>magnitude of smooth muscle relaxation in different regions of the stomach. FASEB Journal, 2010, 24,<br>1008.4.                  | 0.2                | 0                     |
| 41 | Upâ€regulation of RGS2 Mediate ILâ€1 betaâ€Induced Decrease in Muscle Contraction in Response to NPRâ€C activation in Tenia Coli. FASEB Journal, 2009, 23, 983.3.                                                               | 0.2                | 0                     |
| 42 | Inhibitory Phosphorylation of Soluble Guanylyl Cyclase by Muscarinic m2 Receptors via Gβγ-Dependent<br>Activation of c-Src Kinase. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 183-189.                   | 1.3                | 15                    |
| 43 | Phosphorylation of GRK2 by PKA augments GRK2-mediated phosphorylation, internalization, and desensitization of VPAC2 receptors in smooth muscle. American Journal of Physiology - Cell Physiology, 2008, 294, C477-C487.        | 2.1                | 29                    |
| 44 | Stimulatory phosphorylation of cAMP-specific PDE4D5 by contractile agonists is mediated by<br>PKC-dependent inactivation of protein phosphatase 2A. American Journal of Physiology - Renal<br>Physiology, 2008, 294, G327-G335. | 1.6                | 6                     |
| 45 | SIGNALING FOR CONTRACTION AND RELAXATION IN SMOOTH MUSCLE OF THE GUT. Annual Review of Physiology, 2006, 68, 345-374.                                                                                                           | 5.6                | 310                   |
| 46 | Activation of PLC-δ1 by Gi/o-coupled receptor agonists. American Journal of Physiology - Cell<br>Physiology, 2004, 287, C1679-C1687.                                                                                            | 2.1                | 39                    |
| 47 | Modulation of soluble guanylate cyclase activity by phosphorylation. Neurochemistry International, 2004, 45, 845-851.                                                                                                           | 1.9                | 21                    |
| 48 | Differential signalling by muscarinic receptors in smooth muscle: m2-mediated inactivation of myosin light chain kinase via Gi3, Cdc42/Rac1 and p21-activated kinase 1 pathway, and m3-mediated MLC20 (20ÅkDa) <sup>-</sup>     | Γj <u>ξ</u> τΩq0 ( | ) 0 rgBT /Ovei<br>134 |
| 49 | Inhibition of sustained smooth muscle contraction by PKA and PKG preferentially mediated by phosphorylation of RhoA. American Journal of Physiology - Renal Physiology, 2003, 284, G1006-G1016.                                 | 1.6                | 98                    |
| 50 | Selective phosphorylation of the IP <sub>3</sub> R-I in vivo by cGMP-dependent protein kinase in smooth muscle. American Journal of Physiology - Renal Physiology, 2003, 284, G221-G230.                                        | 1.6                | 53                    |
| 51 | PKA-dependent activation of PDE3A and PDE4 and inhibition of adenylyl cyclase V/VI in smooth muscle.<br>American Journal of Physiology - Cell Physiology, 2002, 282, C508-C517.                                                 | 2.1                | 88                    |
| 52 | Activation of phosphodiesterase 5 and inhibition of guanylate cyclase by cGMP-dependent protein<br>kinase in smooth muscle. Biochemical Journal, 2001, 360, 199.                                                                | 1.7                | 50                    |
| 53 | Activation of phosphodiesterase 5 and inhibition of guanylate cyclase by cGMP-dependent protein<br>kinase in smooth muscle. Biochemical Journal, 2001, 360, 199-208.                                                            | 1.7                | 78                    |
| 54 | Heterologous Desensitization Mediated by G Protein-specific Binding to Caveolin. Journal of Biological Chemistry, 2000, 275, 30211-30219.                                                                                       | 1.6                | 76                    |

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Longitudinal smooth muscle of the mammalian intestine. Cell Biochemistry and Biophysics, 1998, 28, 31-44.                                                                                    | 0.9 | 25        |
| 56 | cGMP-mediated Ca <sup>2+</sup> release from IP <sub>3</sub> -insensitive Ca <sup>2+</sup> stores in smooth muscle. American Journal of Physiology - Cell Physiology, 1998, 274, C1199-C1205. | 2.1 | 21        |
| 57 | Smooth Muscle of the Gut. , 0, , 103-132.                                                                                                                                                    |     | 2         |