John R Swierk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/388440/publications.pdf Version: 2024-02-01

361413 395702 1,924 32 20 33 citations h-index g-index papers 43 43 43 3062 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells. Chemical Society Reviews, 2013, 42, 2357-2387.	38.1	495
2	Electrochemical Study of the Energetics of the Oxygen Evolution Reaction at Nickel Iron (Oxy)Hydroxide Catalysts. Journal of Physical Chemistry C, 2015, 119, 19022-19029.	3.1	282
3	Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15612-15616.	7.1	280
4	Metal-free organic sensitizers for use in water-splitting dye-sensitized photoelectrochemical cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1681-1686.	7.1	133
5	Effects of Electron Trapping and Protonation on the Efficiency of Water-Splitting Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2014, 136, 10974-10982.	13.7	79
6	Dynamics of Electron Injection in SnO ₂ /TiO ₂ Core/Shell Electrodes for Water-Splitting Dye-Sensitized Photoelectrochemical Cells. Journal of Physical Chemistry Letters, 2016, 7, 2930-2934.	4.6	56
7	Rutile TiO ₂ as an Anode Material for Water-Splitting Dye-Sensitized Photoelectrochemical Cells. ACS Energy Letters, 2016, 1, 603-606.	17.4	54
8	Ultrafast Electron Injection Dynamics of Photoanodes for Water-Splitting Dye-Sensitized Photoelectrochemical Cells. Journal of Physical Chemistry C, 2016, 120, 5940-5948.	3.1	48
9	Dynamics of Electron Recombination and Transport in Water-Splitting Dye-Sensitized Photoanodes. Journal of Physical Chemistry C, 2015, 119, 13858-13867.	3.1	47
10	Photovoltage Effects of Sintered IrO ₂ Nanoparticle Catalysts in Water-Splitting Dye-Sensitized Photoelectrochemical Cells. Journal of Physical Chemistry C, 2014, 118, 17046-17053.	3.1	43
11	Mechanistic Investigations of an α-Aminoarylation Photoredox Reaction. Journal of the American Chemical Society, 2021, 143, 8878-8885.	13.7	42
12	Understanding the Effect of Monomeric Iridium(III/IV) Aquo Complexes on the Photoelectrochemistry of IrO _{<i>x</i>} · <i>n</i> H ₂ O-Catalyzed Water-Splitting Systems. Journal of the American Chemical Society, 2015, 137, 8749-8757.	13.7	41
13	Proton-Induced Trap States, Injection and Recombination Dynamics in Water-Splitting Dye-Sensitized Photoelectrochemical Cells. ACS Applied Materials & Interfaces, 2016, 8, 16727-16735.	8.0	35
14	Applicability of the thin-film approximation in terahertz photoconductivity measurements. Applied Physics Letters, 2018, 113, .	3.3	35
15	Direct Interfacial Electron Transfer from High-Potential Porphyrins into Semiconductor Surfaces: A Comparison of Linkers and Anchoring Groups. Journal of Physical Chemistry C, 2018, 122, 13529-13539.	3.1	31
16	High-Potential Porphyrins Supported on SnO ₂ and TiO ₂ Surfaces for Photoelectrochemical Applications. Journal of Physical Chemistry C, 2016, 120, 28971-28982.	3.1	28
17	Unusual Stability of a Bacteriochlorin Electrocatalyst under Reductive Conditions. A Case Study on CO ₂ Conversion to CO. ACS Catalysis, 2018, 8, 10131-10136.	11.2	28
18	Frequency-Dependent Terahertz Transient Photoconductivity of Mesoporous SnO ₂ Films. Journal of Physical Chemistry C, 2017, 121, 15949-15956.	3.1	24

John R Swierk

#	Article	IF	CITATIONS
19	Photosensitized [2+2] ycloadditions of Alkenylboronates and Alkenes. Angewandte Chemie - International Edition, 2022, 61, e202200725.	13.8	22
20	Molecular design of light-harvesting photosensitizers: effect of varied linker conjugation on interfacial electron transfer. Physical Chemistry Chemical Physics, 2016, 18, 18678-18682.	2.8	21
21	A Terahertz-Transparent Electrochemical Cell for In Situ Terahertz Spectroelectrochemistry. Analytical Chemistry, 2018, 90, 4389-4396.	6.5	21
22	Electrocatalytic Water Oxidation by Single Site and Small Nuclearity Clusters of Cobalt. Journal of the Electrochemical Society, 2018, 165, H3028-H3033.	2.9	13
23	Temperature-dependent colour change is a function of sex and directionality of temperature shift in the eastern fence lizard (<i>Sceloporus undulatus</i>). Biological Journal of the Linnean Society, 2016, , .	1.6	10
24	Shallow Distance Dependence for Proton-Coupled Tyrosine Oxidation in Oligoproline Peptides. Journal of the American Chemical Society, 2020, 142, 12106-12118.	13.7	10
25	Insights into the Mechanism of an Allylic Arylation Reaction via Photoredox-Coupled Hydrogen Atom Transfer. Journal of Organic Chemistry, 2022, 87, 223-230.	3.2	9
26	Suspensions of Semiconducting Nanoparticles in Nafion for Transient Spectroscopy and Terahertz Photoconductivity Measurements. Analytical Chemistry, 2020, 92, 4187-4192.	6.5	7
27	Photosensitized [2+2] ycloadditions of Alkenylboronates and Alkenes. Angewandte Chemie, 2022, 134, .	2.0	7
28	Ultrafast proton-assisted tunneling through ZrO ₂ in dye-sensitized SnO ₂ -core/ZrO ₂ -shell films. Chemical Communications, 2018, 54, 7971-7974.	4.1	5
29	Tuning the Conduction Band for Interfacial Electron Transfer: Dye-Sensitized Sn _{<i>x</i>} Ti _{1–<i>x</i>} O ₂ Photoanodes for Water Splitting. ACS Applied Energy Materials, 2021, 4, 4695-4703.	5.1	4
30	Comparison of Material Activity and Selectivity in the Electrocatalytic Oxidation of Dibenzothiophene. Journal of the Electrochemical Society, 2021, 168, 116515.	2.9	3
31	Using Lifetime and Quenching Rate Constant to Determine Optimal Quencher Concentration. ACS Omega, 2022, 7, 25532-25536.	3.5	3
32	Interfacial electron transfer in dye-sensitized mixed metal oxides for water splitting. , 2019, , .		1