Jianxiong Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/388421/publications.pdf Version: 2024-02-01

Ιωνικιόνο Χιι

#	Article	IF	CITATIONS
1	Controllable synthesis of hierarchical nanoporous carbon@Ni(OH)2 rambutan-like composite microspheres for high-performance hybrid supercapacitor. Arabian Journal of Chemistry, 2022, 15, 103580.	4.9	10
2	Tough, Self-Recoverable, Spiropyran (SP3) Bearing Polymer Beads Incorporated PAM Hydrogels with Sole Mechanochromic Behavior. Gels, 2022, 8, 208.	4.5	10
3	Photonic crystal films with upconversion luminescence based on the self-assembly of polystyrene encapsulated NaYF4:Ln3+ composite microspheres for dual-mode optical code. Reactive and Functional Polymers, 2022, 173, 105224.	4.1	4
4	Polydopamine/montmorillonite-embedded pullulan hydrogels as efficient adsorbents for removing crystal violet. Journal of Hazardous Materials, 2021, 402, 123359.	12.4	107
5	Agar/carbon dot crosslinked polyacrylamide double-network hydrogels with robustness, self-healing, and stimulus-response fluorescence for smart anti-counterfeiting. Materials Chemistry Frontiers, 2021, 5, 5418-5428.	5.9	31
6	Highly Fluorescent <i>N</i> -Doped Carbon Quantum Dots Derived from Bamboo Stems for Selective Detection of Fe ³⁺ lons in Biological Systems. Journal of Biomedical Nanotechnology, 2021, 17, 312-321.	1.1	15
7	Flexible Li+/agar/pHEAA double-network conductive hydrogels with self-adhesive and self-repairing properties as strain sensors for human motion monitoring. Reactive and Functional Polymers, 2021, 168, 105054.	4.1	12
8	Efficient Metal-Free Norbornadiene–Maleimide Click Reaction for the Formation of Molecular Bottlebrushes. Macromolecules, 2021, 54, 10031-10039.	4.8	12
9	Tough, adhesive, self-healing, fully physical crosslinked κ-CG-K+/pHEAA double-network ionic conductive hydrogels for wearable sensors. Polymer, 2021, 236, 124321.	3.8	30
10	Efficient decontamination of heavy metals from aqueous solution using pullulan/polydopamine hydrogels. International Journal of Biological Macromolecules, 2020, 145, 1049-1058.	7.5	63
11	Plasma electrolytic oxidation of Zircaloy-2 alloy in potassium hydroxide/sodium silicate electrolytes: The effect of silicate concentration. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2020, , .	1.9	7
12	Comparative Study on Supercapacitive Performances of Hierarchically Nanoporous Carbon Materials With Morphologies From Submicrosphere to Hexagonal Microprism. Frontiers in Chemistry, 2020, 8, 599981.	3.6	4
13	Three-Dimensional Walnut-Like, Hierarchically Nanoporous Carbon Microspheres: One-Pot Synthesis, Activation, and Supercapacitive Performance. ACS Sustainable Chemistry and Engineering, 2020, 8, 8024-8036.	6.7	32
14	A versatile luminescent resonance energy transfer (LRET)-based ratiometric upconversion nanoprobe for intracellular miRNA biosensing. Journal of Materials Chemistry B, 2020, 8, 5952-5961.	5.8	22
15	Lanthanide-Doped Upconversion Nanoparticle-Cross-Linked Double-Network Hydrogels with Strong Bulk/Interfacial Toughness and Tunable Full-Color Fluorescence for Bioimaging and Biosensing. ACS Applied Nano Materials, 2020, 3, 2774-2786.	5.0	25
16	Synthesis and Inkjet Printing of NaYF ₄ :Ln ³⁺ @NaYF ₄ Core–Shell Nanoparticles with Enhanced Upconversion Fluorescence for Anti-Counterfeiting Applications. Journal of Nanoscience and Nanotechnology, 2020, 20, 1511-1519.	0.9	20
17	Controlled synthesis and panchromatic printing of highly luminescent NaYF4:Ln3+ upconversion hollow microtubes for information encryption on various packaging substrates. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 396, 112518.	3.9	8
18	Upconversion Nanoparticles@Carbon Dots@Meso-SiO ₂ Sandwiched Core–Shell Nanohybrids with Tunable Dual-Mode Luminescence for 3D Anti-Counterfeiting Barcodes. Langmuir, 2019, 35, 11503-11511.	3.5	93

JIANXIONG XU

#	Article	IF	CITATIONS
19	Design of core/active-shell NaYF4:Ln3+@NaYF4:Yb3+ nanophosphors with enhanced red-green-blue upconversion luminescence for anti-counterfeiting printing. Composites Part B: Engineering, 2019, 179, 107504.	12.0	49
20	Noninvasive monitoring of bone regeneration using NaYF4: Yb3+, Er3+ upconversion hollow microtubes supporting PLGA-PEG-PLGA hydrogel. Reactive and Functional Polymers, 2019, 143, 104333.	4.1	25
21	Cage-like hierarchically mesoporous hollow silica microspheres templated by mesomorphous polyelectrolyte-surfactant complexes for noble metal nanoparticles immobilization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 575, 129-139.	4.7	20
22	Design of novel lanthanide-doped core–shell nanocrystals with dual up-conversion and down-conversion luminescence for anti-counterfeiting printing. Dalton Transactions, 2019, 48, 6971-6983.	3.3	103
23	Molecular Dynamics Simulation of the Effect of Carbon Space Lengths on the Antifouling Properties of Hydroxyalkyl Acrylamides. Langmuir, 2019, 35, 3576-3584.	3.5	14
24	Multiple Physical Cross-Linker Strategy To Achieve Mechanically Tough and Reversible Properties of Double-Network Hydrogels in Bulk and on Surfaces. ACS Applied Polymer Materials, 2019, 1, 701-713.	4.4	39
25	Tanshinones inhibit hIAPP aggregation, disaggregate preformed hIAPP fibrils, and protect cultured cells. Journal of Materials Chemistry B, 2018, 6, 56-67.	5.8	58
26	Micellar-incorporated hydrogels with highly tough, mechanoresponsive, and self-recovery properties for strain-induced color sensors. Journal of Materials Chemistry C, 2018, 6, 11536-11551.	5.5	36
27	Synthesis of Lanthanide-Ion-Doped NaYF ₄ RGB Up-Conversion Nanoparticles for Anti-Counterfeiting Application. Journal of Nanoscience and Nanotechnology, 2018, 18, 8207-8215.	0.9	10
28	Hydrothermal Synthesis of PAA-Coated NaYF ₄ :Yb ³⁺ , Er ³⁺ Nanophosphors with Predicted Morphology, Phase and Enhanced Upconversion Luminescence Properties. Journal of Nanoscience and Nanotechnology, 2018, 18, 8258-8268.	0.9	5
29	Synthesis and characterization of NaYF ₄ :Yb, Er up-conversion phosphors/poly(vinyl) Tj ETQq1 1 0.78	4314 rgBT	/Overlock
30	Hydrothermal synthesis and inkjet printing of hexagonal-phase NaYF ₄ : Ln ³⁺ upconversion hollow microtubes for smart anti-counterfeiting encryption. Materials Chemistry Frontiers, 2018, 2, 1997-2005.	5.9	70
31	Multicolor Luminescent Anti-Counterfeiting Barcode Based on Transparent Lanthanide-Doped NaYF ₄ /Poly(Vinyl Alcohol) Nanocomposite with Tunable Full-Color Upconversion Emission. Nanoscience and Nanotechnology Letters, 2018, 10, 365-372.	0.4	7
32	Synthesis and Characterization of Ultralow Fouling Poly(<i>N</i> -acryloyl-glycinamide) Brushes. Langmuir, 2017, 33, 13964-13972.	3.5	31
33	Branched NaYF ₄ :Yb, Er Up-Conversion Phosphors with Luminescent Properties for Anti-Counterfeiting Application. Science of Advanced Materials, 2017, 9, 2223-2233.	0.7	25
34	Preparation of monodispersed core-shell microspheres with surface antibacterial property employingN-(4-vinylbenzyl)-N,N-diethylamine hydrochloride as surfmer. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 143-150.	3.4	5
35	Dual responsive macroemulsion stabilized by Y-shaped amphiphilic AB ₂ miktoarm star copolymers. RSC Advances, 2015, 5, 96377-96386.	3.6	19
36	Synthesis of Highâ€Molecularâ€Weight Brush Polymers via RAFT Polymerization within the Micellar Nanoreactor of a PEGâ€Based Macromonomer. Macromolecular Chemistry and Physics, 2015, 216, 172-181.	2.2	5

JIANXIONG XU

#	Article	IF	CITATIONS
37	Facile fabrication of hollow hydridosilica nanoparticles with mesoporous shell and their dual effect in Pd nanoparticles immobilization. Chemical Engineering Journal, 2014, 240, 161-168.	12.7	21
38	One-Stage Synthesis of Cagelike Porous Polymeric Microspheres and Application as Catalyst Scaffold of Pd Nanoparticles. Macromolecules, 2011, 44, 3730-3738.	4.8	64
39	Synthesis of Hierarchical Hollow Silica Microspheres Containing Surface Nanoparticles Employing the Quasi-Hard Template of Poly(4-vinylpyridine) Microspheres. Langmuir, 2011, 27, 8983-8989.	3.5	32
40	Controlled Fabrication of Theophylline Imprinted Polymers on Multiwalled Carbon Nanotubes via Atom Transfer Radical Polymerization. Journal of Nanoscience and Nanotechnology, 2011, 11, 1217-1224.	0.9	4