Alexios Grigoropoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3884052/publications.pdf

Version: 2024-02-01

759233 642732 25 565 12 23 citations g-index h-index papers 25 25 25 1085 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Spin-Relaxation Properties of a High-Spin Mononuclear Mn ^{III} O ₆ -Containing Complex. Inorganic Chemistry, 2013, 52, 12869-12871.	4.0	81
2	Catalytic Response and Stability of Nickel/Alumina for the Hydrogenation of 5â€Hydroxymethylfurfural in Water. ChemSusChem, 2016, 9, 521-531.	6.8	72
3	Selective conversion of 5-hydroxymethylfurfural to cyclopentanone derivatives over Cu–Al ₂ O ₃ catalysts in water. Green Chemistry, 2017, 19, 1701-1713.	9.0	72
4	Encapsulation of an organometallic cationic catalyst by direct exchange into an anionic MOF. Chemical Science, 2016, 7, 2037-2050.	7.4	57
5	Encapsulation of Crabtree's Catalyst in Sulfonated MILâ€101(Cr): Enhancement of Stability and Selectivity between Competing Reaction Pathways by the MOF Chemical Microenvironment. Angewandte Chemie - International Edition, 2018, 57, 4532-4537.	13.8	52
6	Tetrahedral and Square Planar Ni[(SPR ₂) ₂ N] ₂ complexes, R = Ph & amp; ⁱ Pr Revisited: Experimental and Theoretical Analysis of Interconversion Pathways, Structural Preferences, and Spin Delocalization. Inorganic Chemistry, 2010, 49, 5079-5093.	4.0	46
7	Structural, spectroscopic and magnetic properties of M[R2P(E)NP(E)Râ \in 2]2complexes, M = Co, Mn, E = S, Se and R, Râ \in 2 = Ph oriPr. Covalency of Mâ \in 5 bonds from experimental data and theoretical calculations. Dalton Transactions, 2006, , 2301-2315.	3.3	35
8	Selective conversion of 5-hydroxymethylfurfural to diketone derivatives over Beta zeolite-supported Pd catalysts in water. Journal of Catalysis, 2019, 375, 224-233.	6.2	31
9	Synthesis and characterization of new RhI complexes bearing CO, PPh3 and chelating P,O- or Se,Se-ligands: Application to hydroformylation of styrene. Journal of Organometallic Chemistry, 2007, 692, 4129-4138.	1.8	19
10	Electron and Spin Density Topology of the Hâ€Cluster and Its Biomimetic Complexes. European Journal of Inorganic Chemistry, 2011, 2011, 2677-2690.	2.0	14
11	Multi-edge X-ray Absorption Spectroscopy. 1. X-ray Absorption near-Edge Structure Analysis of a Biomimetic Model of FeFe-Hydrogenase. Journal of Physical Chemistry A, 2012, 116, 12280-12298.	2.5	13
12	Statistical copolymers of norbornene and 5-vinyl-2-norbornene by a ditungsten complex mediated ring-opening metathesis Polymerization: Synthesis, thermal properties, and kinetics of thermal decomposition. Journal of Polymer Science Part A, 2013, 51, 4835-4844.	2.3	12
13	Coordination of iPr2P(O)NHP(O)iPr2 to Co(II): Simultaneous formation of octahedral and tetrahedral complexes. Inorganic Chemistry Communication, 2013, 30, 34-38.	3.9	9
14	Field-induced slow relaxation of magnetization in the <i>S</i> = 3/2 octahedral complexes <i>trans</i> -[Co{(OPPh ₂)(EPPh ₂)N} ₂ (dmf) ₂], E = S, Se: effects of Coâ€"Se <i>vs.</i> Coâ€"S coordination. Inorganic Chemistry Frontiers, 2019, 6, 1405-1414.	6.0	9
15	Synthesis of Chalcogenidoimidodiphosphinato–Rh ^I Complexes and DFT Investigation of Their Catalytic Activation in Olefin Hydroformylation. European Journal of Inorganic Chemistry, 2013, 2013, 1170-1183.	2.0	8
16	Encapsulation of Crabtree's Catalyst in Sulfonated MIL-101(Cr): Enhancement of Stability and Selectivity between Competing Reaction Pathways by the MOF Chemical Microenvironment. Angewandte Chemie, 2018, 130, 4622-4627.	2.0	7
17	Metathesis Polymerization Reactions Induced by the Bimetallic Complex (Ph4P)2[W2(\hat{l} 4-Br)3Br6]. Polymers, 2015, 7, 2611-2624.	4.5	6
18	Evaluation of biosynthetic pathways for the unique dithiolate ligand of the FeFe hydrogenase H-cluster. Journal of Biological Inorganic Chemistry, 2010, 15, 1177-1182.	2.6	5

#	Article	IF	CITATIONS
19	Visible-Light Active Sulfur-Doped Titania Nanoparticles Immobilized on a Silica Matrix: Synthesis, Characterization and Photocatalytic Degradation of Pollutants. Nanomaterials, 2021, 11, 2543.	4.1	4
20	<i>In silico</i> evaluation of proposed biosynthetic pathways for the unique dithiolate ligand of the Hâ€cluster of [FeFe]â€hydrogenase. Journal of Computational Chemistry, 2011, 32, 3194-3206.	3.3	3
21	Magnetic Properties and Electronic Structure of the $\langle i \rangle S \langle j \rangle = 2$ Complex [Mn $\langle sup \rangle III \langle sup \rangle \{(OPPh \langle sub \rangle 2 \langle sub \rangle 2 \langle sub \rangle N \langle sub \rangle 3 \langle sub \rangle \}$ Showing Field-Induced Slow Magnetization Relaxation. Inorganic Chemistry, 2020, 59, 13281-13294.	4.0	3
22	High-throughput discovery of Hf promotion on the stabilisation of hcp Co and Fischer-Tropsch activity. Journal of Catalysis, 2021, 396, 315-323.	6.2	3
23	Electronic Structure of Tetrahedral, $\langle i \rangle S < i \rangle = 2$, [Fe{(EP $\langle i \rangle < \sup > i / \sup < i > 2 < \sup > 2 < \sup > 2 < \sup > 2 < \sup > 3 < i > 2 < \sup > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 < i > 3 $	4.0	3
24	Immobilisation of Homogeneous Catalysts in Metal-Organic Frameworks: Methods and Selected Examples. , 2017, , 123-158.		1
25	Structural and catalytic properties of the [Ni(BIPHEP)X2] complexes, BIPHEPÂ=Â2,2-diphenylphosphino-1,1-biphenyl; XÂ=ÂCl, Br. Inorganica Chimica Acta, 2021, 522, 120300.	2.4	0