Timothy Noel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3883586/publications.pdf Version: 2024-02-01

		26567	29081
184	12,349	56	104
papers	citations	h-index	g-index
	~~ <i>i</i>		
224	224	224	7837
all docs	docs citations	times ranked	citing authors

Τιμοτην Νοεί

#	Article	lF	CITATIONS
1	Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment. Chemical Reviews, 2016, 116, 10276-10341.	23.0	1,166
2	Novel Process Windows for Enabling, Accelerating, and Uplifting Flow Chemistry. ChemSusChem, 2013, 6, 746-789.	3.6	521
3	Liquid phase oxidation chemistry in continuous-flow microreactors. Chemical Society Reviews, 2016, 45, 83-117.	18.7	421
4	Photochemical Transformations Accelerated in Continuousâ€Flow Reactors: Basic Concepts and Applications. Chemistry - A European Journal, 2014, 20, 10562-10589.	1.7	416
5	Cross-coupling in flow. Chemical Society Reviews, 2011, 40, 5010.	18.7	354
6	Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chemical Reviews, 2022, 122, 2752-2906.	23.0	330
7	The Fundamentals Behind the Use of Flow Reactors in Electrochemistry. Accounts of Chemical Research, 2019, 52, 2858-2869.	7.6	323
8	C(sp ³)–H functionalizations of light hydrocarbons using decatungstate photocatalysis in flow. Science, 2020, 369, 92-96.	6.0	263
9	Flow Photochemistry: Shine Some Light on Those Tubes!. Trends in Chemistry, 2020, 2, 92-106.	4.4	245
10	Palladium-catalyzed amination reactions in flow: overcoming the challenges of clogging via acoustic irradiation. Chemical Science, 2011, 2, 287-290.	3.7	203
11	A Mild, Oneâ€Pot Stadler–Ziegler Synthesis of Arylsulfides Facilitated by Photoredox Catalysis in Batch and Continuousâ€Flow. Angewandte Chemie - International Edition, 2013, 52, 7860-7864.	7.2	182
12	Safety assessment in development and operation of modular continuous-flow processes. Reaction Chemistry and Engineering, 2017, 2, 258-280.	1.9	179
13	Selective C(sp ³)â^'H Aerobic Oxidation Enabled by Decatungstate Photocatalysis in Flow. Angewandte Chemie - International Edition, 2018, 57, 4078-4082.	7.2	179
14	Practical Photocatalytic Trifluoromethylation and Hydrotrifluoromethylation of Styrenes in Batch and Flow. Angewandte Chemie - International Edition, 2016, 55, 15549-15553.	7.2	171
15	A convenient numbering-up strategy for the scale-up of gas–liquid photoredox catalysis in flow. Reaction Chemistry and Engineering, 2016, 1, 73-81.	1.9	166
16	Metalâ€Free Photocatalytic Aerobic Oxidation of Thiols to Disulfides in Batch and Continuousâ€Flow. Advanced Synthesis and Catalysis, 2015, 357, 2180-2186.	2.1	164
17	Suzuki–Miyaura Cross oupling Reactions in Flow: Multistep Synthesis Enabled by a Microfluidic Extraction. Angewandte Chemie - International Edition, 2011, 50, 5943-5946.	7.2	156
18	Sulfonyl Fluoride Synthesis through Electrochemical Oxidative Coupling of Thiols and Potassium Fluoride. Journal of the American Chemical Society, 2019, 141, 11832-11836.	6.6	148

#	Article	IF	CITATIONS
19	Sulfonamide Synthesis through Electrochemical Oxidative Coupling of Amines and Thiols. Journal of the American Chemical Society, 2019, 141, 5664-5668.	6.6	146
20	Rapid Trifluoromethylation and Perfluoroalkylation of Fiveâ€Membered Heterocycles by Photoredox Catalysis in Continuous Flow. ChemSusChem, 2014, 7, 1612-1617.	3.6	145
21	Photocatalytic Modification of Amino Acids, Peptides, and Proteins. Chemistry - A European Journal, 2019, 25, 26-42.	1.7	145
22	Separation/recycling methods for homogeneous transition metal catalysts in continuous flow. Green Chemistry, 2015, 17, 2012-2026.	4.6	143
23	Application of metal oxide semiconductors in light-driven organic transformations. Catalysis Science and Technology, 2019, 9, 5186-5232.	2.1	143
24	An environmentally benign and selective electrochemical oxidation of sulfides and thiols in a continuous-flow microreactor. Green Chemistry, 2017, 19, 4061-4066.	4.6	133
25	A Teflon microreactor with integrated piezoelectric actuator to handle solid forming reactions. Lab on A Chip, 2011, 11, 2488.	3.1	128
26	Accelerating Palladiumâ€Catalyzed CF Bond Formation: Use of a Microflow Packedâ€Bed Reactor. Angewandte Chemie - International Edition, 2011, 50, 8900-8903.	7.2	126
27	Organophotoredox Hydrodefluorination of Trifluoromethylarenes with Translational Applicability to Drug Discovery. Journal of the American Chemical Society, 2020, 142, 9181-9187.	6.6	120
28	Disulfideâ€Catalyzed Visibleâ€Lightâ€Mediated Oxidative Cleavage of C=C Bonds and Evidence of an Olefin–Disulfide Chargeâ€Transfer Complex. Angewandte Chemie - International Edition, 2017, 56, 832-836.	7.2	119
29	Merger of Visible-Light Photoredox Catalysis and C–H Activation for the Room-Temperature C-2 Acylation of Indoles in Batch and Flow. ACS Catalysis, 2017, 7, 3818-3823.	5.5	116
30	Utilization of milli-scale coiled flow inverter in combination with phase separator for continuous flow liquid–liquid extraction processes. Chemical Engineering Journal, 2016, 283, 855-868.	6.6	114
31	A mild and fast photocatalytic trifluoromethylation of thiols in batch and continuous-flow. Chemical Science, 2014, 5, 4768-4773.	3.7	109
32	A Leafâ€Inspired Luminescent Solar Concentrator for Energyâ€Efficient Continuousâ€Flow Photochemistry. Angewandte Chemie - International Edition, 2017, 56, 1050-1054.	7.2	109
33	Visible‣ightâ€Mediated Selective Arylation of Cysteine in Batch and Flow. Angewandte Chemie - International Edition, 2017, 56, 12702-12707.	7.2	94
34	Mild and selective base-free C–H arylation of heteroarenes: experiment and computation. Chemical Science, 2017, 8, 1046-1055.	3.7	91
35	Batch and Flow Synthesis of Disulfides by Visibleâ€Lightâ€Induced TiO ₂ Photocatalysis. ChemSusChem, 2016, 9, 1781-1785.	3.6	88
36	Accelerated gas-liquid visible light photoredox catalysis with continuous-flow photochemical microreactors. Nature Protocols, 2016, 11, 10-21.	5.5	88

#	Article	IF	CITATIONS
37	Visible-Light Photocatalytic Decarboxylation of α,β-Unsaturated Carboxylic Acids: Facile Access to Stereoselective Difluoromethylated Styrenes in Batch and Flow. ACS Catalysis, 2017, 7, 7136-7140.	5.5	87
38	Membrane Microreactors: Gas–Liquid Reactions Made Easy. ChemSusChem, 2013, 6, 405-407.	3.6	86
39	A personal perspective on the future of flow photochemistry. Journal of Flow Chemistry, 2017, 7, 87-93.	1.2	85
40	Suzuki–Miyaura Cross-Coupling of Heteroaryl Halides and Arylboronic Acids in Continuous Flow. Organic Letters, 2011, 13, 5180-5183.	2.4	82
41	Scale-up of micro- and milli-reactors: An overview of strategies, design principles and applications. Chemical Engineering Science: X, 2021, 10, 100097.	1.5	81
42	Energyâ€Efficient Solar Photochemistry with Luminescent Solar Concentrator Based Photomicroreactors. Angewandte Chemie - International Edition, 2019, 58, 14374-14378.	7.2	80
43	Silyl Radical-Mediated Activation of Sulfamoyl Chlorides Enables Direct Access to Aliphatic Sulfonamides from Alkenes. Journal of the American Chemical Society, 2020, 142, 720-725.	6.6	78
44	Pushing the boundaries of C–H bond functionalization chemistry using flow technology. Journal of Flow Chemistry, 2020, 10, 13-71.	1.2	76
45	Aerobic C–H Olefination of Indoles via a Cross-Dehydrogenative Coupling in Continuous Flow. Organic Letters, 2014, 16, 5800-5803.	2.4	75
46	A Fully Automated Continuousâ€Flow Platform for Fluorescence Quenching Studies and Stern–Volmer Analysis. Angewandte Chemie - International Edition, 2018, 57, 11278-11282.	7.2	73
47	Visible‣ightâ€Promoted Ironâ€Catalyzed C(sp ²)–C(sp ³) Kumada Cross oupling Flow. Angewandte Chemie - International Edition, 2019, 58, 13030-13034.	; in 7.2	71
48	A compact photomicroreactor design for kinetic studies of gasâ€liquid photocatalytic transformations. AICHE Journal, 2015, 61, 2215-2227.	1.8	70
49	Design and application of a modular and scalable electrochemical flow microreactor. Journal of Flow Chemistry, 2018, 8, 157-165.	1.2	70
50	A Modular Flow Design for the <i>meta</i> elective Câ^'H Arylation of Anilines. Angewandte Chemie - International Edition, 2017, 56, 7161-7165.	7.2	68
51	Scale-up of a Luminescent Solar Concentrator-Based Photomicroreactor via Numbering-up. ACS Sustainable Chemistry and Engineering, 2018, 6, 422-429.	3.2	68
52	Efficient Electrocatalytic Reduction of Furfural to Furfuryl Alcohol in a Microchannel Flow Reactor. Organic Process Research and Development, 2019, 23, 403-408.	1.3	65
53	Some new C2-symmetric bicyclo[2.2.1]heptadiene ligands: synthesis and catalytic activity in rhodium(I)-catalyzed asymmetric 1,4- and 1,2-additions. Tetrahedron, 2007, 63, 12961-12967.	1.0	64
54	Packedâ€Bed Microreactor for Continuousâ€Flow Adipic Acid Synthesis from Cyclohexene and Hydrogen Peroxide. Chemical Engineering and Technology, 2013, 36, 1001-1009.	0.9	64

#	Article	IF	CITATIONS
55	Copper(I)â€Catalyzed Azide–Alkyne Cycloadditions in Microflow: Catalyst Activity, Highâ€T Operation, and an Integrated Continuous Copper Scavenging Unit. ChemSusChem, 2012, 5, 1703-1707.	3.6	61
56	Visible Light Photocatalytic Metal-Free Perfluoroalkylation of Heteroarenes in Continuous Flow. Journal of Flow Chemistry, 2015, 4, 12-17.	1.2	61
57	Rapid and Direct Photocatalytic C(sp ³)â^'H Acylation and Arylation in Flow. Angewandte Chemie - International Edition, 2021, 60, 21277-21282.	7.2	61
58	The promise and pitfalls of photocatalysis for organic synthesis. Chem Catalysis, 2022, 2, 468-476.	2.9	61
59	Solvent―and Catalystâ€Free Huisgen Cycloaddition to Rufinamide in Flow with a Greener, Less Expensive Dipolarophile. ChemSusChem, 2013, 6, 2220-2225.	3.6	58
60	Process intensification of a photochemical oxidation reaction using a Rotor-Stator Spinning Disk Reactor: A strategy for scale up. Chemical Engineering Journal, 2020, 400, 125875.	6.6	56
61	Shedding light on the nature of the catalytically active species in photocatalytic reactions using Bi2O3 semiconductor. Nature Communications, 2021, 12, 625.	5.8	56
62	Decatungstateâ€Mediated C(sp ³)–H Heteroarylation via Radicalâ€Polar Crossover in Batch and Flow. Angewandte Chemie - International Edition, 2021, 60, 17893-17897.	7.2	56
63	Visible Light-Induced Trifluoromethylation and Perfluoroalkylation of Cysteine Residues in Batch and Continuous Flow. Journal of Organic Chemistry, 2016, 81, 7301-7307.	1.7	55
64	Continuousâ€Flow Multistep Synthesis of Cinnarizine, Cyclizine, and a Buclizine Derivative from Bulk Alcohols. ChemSusChem, 2016, 9, 67-74.	3.6	54
65	Electrochemical Aziridination of Internal Alkenes with Primary Amines. CheM, 2021, 7, 255-266.	5.8	54
66	Lipase-Based Biocatalytic Flow Process in a Packed-Bed Microreactor. Industrial & Engineering Chemistry Research, 2013, 52, 10951-10960.	1.8	50
67	Beyond Organometallic Flow Chemistry: The Principles Behind the Use of Continuous-Flow Reactors for Synthesis. Topics in Organometallic Chemistry, 2015, , 1-41.	0.7	50
68	A sensitivity analysis of a numbered-up photomicroreactor system. Reaction Chemistry and Engineering, 2017, 2, 109-115.	1.9	50
69	Interfacing single-atom catalysis with continuous-flow organic electrosynthesis. Chemical Society Reviews, 2022, 51, 3898-3925.	18.7	50
70	2- and 3-Stage temperature ramping for the direct synthesis of adipic acid in micro-flow packed-bed reactors. Chemical Engineering Journal, 2015, 260, 454-462.	6.6	49
71	Metallic nanoparticles made in flow and their catalytic applications in organic synthesis. Nanotechnology Reviews, 2014, 3, 65-86.	2.6	47
72	A Mechanistic Investigation of the Visibleâ€Light Photocatalytic Trifluoromethylation of Heterocycles Using CF ₃ 1 in Flow. Chemistry - A European Journal, 2016, 22, 12295-12300.	1.7	46

#	Article	IF	CITATIONS
73	Selective C(sp ³)â^'H Aerobic Oxidation Enabled by Decatungstate Photocatalysis in Flow. Angewandte Chemie, 2018, 130, 4142-4146.	1.6	45
74	Practical Photocatalytic Trifluoromethylation and Hydrotrifluoromethylation of Styrenes in Batch and Flow. Angewandte Chemie, 2016, 128, 15778-15782.	1.6	44
75	Flow Synthesis of Diaryliodonium Triflates. Journal of Organic Chemistry, 2017, 82, 11735-11741.	1.7	43
76	<i>De novo</i> Design of Organic Photocatalysts: Bithiophene Derivatives for the Visibleâ€light Induced Câ²'H Functionalization of Heteroarenes. Advanced Synthesis and Catalysis, 2019, 361, 945-950.	2.1	43
77	Potential Analysis of Smart Flow Processing and Micro Process Technology for Fastening Process Development – Use of Chemistry and Process Design as Intensification Fields. Chemie-Ingenieur-Technik, 2012, 84, 660-684.	0.4	42
78	Process intensification education contributes to sustainable development goals. Part 1. Education for Chemical Engineers, 2020, 32, 1-14.	2.8	42
79	Solar Photochemistry in Flow. Topics in Current Chemistry, 2018, 376, 45.	3.0	41
80	Supported gold nanoparticles as efficient and reusable heterogeneous catalyst for cycloisomerization reactions. Green Chemistry, 2015, 17, 3314-3318.	4.6	40
81	Visible-Light Photocatalytic Difluoroalkylation-Induced 1, 2-Heteroarene Migration of Allylic Alcohols in Batch and Flow. Journal of Organic Chemistry, 2018, 83, 11377-11384.	1.7	40
82	A View Through Novel Process Windows. Australian Journal of Chemistry, 2013, 66, 121.	0.5	39
83	Continuous metal scavenging and coupling to one-pot copper-catalyzed azide-alkyne cycloaddition click reaction in flow. Chemical Engineering Journal, 2015, 270, 468-475.	6.6	39
84	Real-time reaction control for solar production of chemicals under fluctuating irradiance. Green Chemistry, 2018, 20, 2459-2464.	4.6	39
85	Micro-flow photosynthesis of new dienophiles for inverse-electron-demand Diels–Alder reactions. Potential applications for pretargeted in vivo PET imaging. Chemical Science, 2017, 8, 1251-1258.	3.7	37
86	Optimization of a Decatungstate-Catalyzed C(sp ³)–H Alkylation Using a Continuous Oscillatory Millistructured Photoreactor. Organic Process Research and Development, 2020, 24, 2356-2361.	1.3	37
87	From alcohol to 1,2,3-triazole via a multi-step continuous-flow synthesis of a rufinamide precursor. Green Chemistry, 2016, 18, 4947-4953.	4.6	36
88	A meso-scale ultrasonic milli-reactor enables gas–liquid-solid photocatalytic reactions in flow. Chemical Engineering Journal, 2022, 428, 130968.	6.6	36
89	Synthetic Applications of Photocatalyzed Halogenâ€Radical Mediated Hydrogen Atom Transfer for Câ^'H Bond Functionalization. European Journal of Organic Chemistry, 2022, 2022, .	1.2	36
90	Kinetic study of hydrogen peroxide decomposition at high temperatures and concentrations in two capillary microreactors. AICHE Journal, 2017, 63, 689-697.	1.8	35

#	Article	IF	CITATIONS
91	A Leafâ€Inspired Luminescent Solar Concentrator for Energyâ€Efficient Continuousâ€Flow Photochemistry. Angewandte Chemie, 2017, 129, 1070-1074.	1.6	35
92	Accelerated and Scalable C(sp ³)–H Amination via Decatungstate Photocatalysis Using a Flow Photoreactor Equipped with High-Intensity LEDs. ACS Central Science, 2022, 8, 51-56.	5.3	35
93	Biocatalytic synthesis of the Green Note <i>trans</i> -2-hexenal in a continuous-flow microreactor. Beilstein Journal of Organic Chemistry, 2018, 14, 697-703.	1.3	34
94	The impact of Novel Process Windows on the Claisen rearrangement. Tetrahedron, 2013, 69, 2885-2890.	1.0	32
95	Every photon counts: understanding and optimizing photon paths in luminescent solar concentrator-based photomicroreactors (LSC-PMs). Reaction Chemistry and Engineering, 2017, 2, 561-566.	1.9	32
96	Photoarylation of Pyridines Using Aryldiazonium Salts and Visible Light: An EDA Approach. Journal of Organic Chemistry, 2019, 84, 10459-10471.	1.7	32
97	Imidate–Phosphanes as Highly Versatile N,P Ligands and Their Application in Palladium atalyzed Asymmetric Allylic Alkylation Reactions. European Journal of Organic Chemistry, 2010, 2010, 4056-4061.	1.2	30
98	Visibleâ€Lightâ€Mediated Selective Arylation of Cysteine in Batch and Flow. Angewandte Chemie, 2017, 129, 12876-12881.	1.6	30
99	Controlled Photocatalytic Aerobic Oxidation of Thiols to Disulfides in an Energyâ€Efficient Photomicroreactor. Chemical Engineering and Technology, 2015, 38, 1733-1742.	0.9	29
100	Disulfideâ€Catalyzed Visibleâ€Lightâ€Mediated Oxidative Cleavage of C=C Bonds and Evidence of an Olefin–Disulfide Chargeâ€Transfer Complex. Angewandte Chemie, 2017, 129, 850-854.	1.6	29
101	Gas bubbles have controversial effects on Taylor flow electrochemistry. Chemical Engineering Journal, 2021, 406, 126811.	6.6	29
102	Eco-efficiency Analysis for Intensified Production of an Active Pharmaceutical Ingredient: A Case Study. Organic Process Research and Development, 2014, 18, 1326-1338.	1.3	28
103	Homogeneous and Gas–Liquid Catellaniâ€Type Reaction Enabled by Continuousâ€Flow Chemistry. Chemistry - A European Journal, 2018, 24, 14079-14083.	1.7	28
104	Process intensification education contributes to sustainable development goals. Part 2. Education for Chemical Engineers, 2020, 32, 15-24.	2.8	28
105	Leachingâ€Free Supported Gold Nanoparticles Catalyzing Cycloisomerizations under Microflow Conditions. Advanced Synthesis and Catalysis, 2015, 357, 3141-3147.	2.1	27
106	A Modular Flow Design for the <i>meta</i> â€Selective Câ^'H Arylation of Anilines. Angewandte Chemie, 2017, 129, 7267-7271.	1.6	27
107	Scale-Up of a Heterogeneous Photocatalytic Degradation Using a Photochemical Rotor–Stator Spinning Disk Reactor. Organic Process Research and Development, 2022, 26, 1279-1288.	1.3	27
108	Micro reaction technology for valorization of biomolecules using enzymes and metal catalysts. Engineering in Life Sciences, 2013, 13, 326-343.	2.0	24

#	Article	IF	CITATIONS
109	Biotechnical Micro-Flow Processing at the EDGE – Lessons to be learnt for a Young Discipline. Chemical and Biochemical Engineering Quarterly, 2014, 28, 167-188.	0.5	24
110	High Pressure Direct Synthesis of Adipic Acid from Cyclohexene and Hydrogen Peroxide via Capillary Microreactors. Industrial & Engineering Chemistry Research, 2016, 55, 2669-2676.	1.8	24
111	Chiral imidates as a new class of nitrogen-based chiral ligands: synthesis and catalytic activity in asymmetric aziridinations and diethylzinc additions. Tetrahedron, 2009, 65, 8879-8884.	1.0	23
112	Palladium-Catalyzed Aerobic Oxidative Coupling of <i>o</i> -Xylene in Flow: A Safe and Scalable Protocol for Cross-Dehydrogenative Coupling. Organic Process Research and Development, 2016, 20, 831-835.	1.3	23
113	Hydrogen Chloride Gas in Solvent-Free Continuous Conversion of Alcohols to Chlorides in Microflow. Organic Process Research and Development, 2016, 20, 568-573.	1.3	23
114	Accelerating sulfonyl fluoride synthesis through electrochemical oxidative coupling of thiols and potassium fluoride in flow. Journal of Flow Chemistry, 2020, 10, 191-197.	1.2	23
115	Flow synthesis of phenylserine using threonine aldolase immobilized on Eupergit support. Beilstein Journal of Organic Chemistry, 2013, 9, 2168-2179.	1.3	21
116	Microflow High-p,T Intensification of Vitamin D ₃ Synthesis Using an Ultraviolet Lamp. Organic Process Research and Development, 2018, 22, 147-155.	1.3	21
117	Ironâ€Catalyzed Crossâ€Coupling of Alkynyl and Styrenyl Chlorides with Alkyl Grignard Reagents in Batch and Flow. Chemistry - A European Journal, 2019, 25, 14532-14535.	1.7	21
118	Homogeneous catalytic C(sp ³)–H functionalization of gaseous alkanes. Chemical Communications, 2021, 57, 9956-9967.	2.2	21
119	The accelerated preparation of 1,4-dihydropyridines using microflow reactors. Tetrahedron Letters, 2014, 55, 2090-2092.	0.7	20
120	Modular allylation of C(sp ³)–H bonds by combining decatungstate photocatalysis and HWE olefination in flow. Chemical Science, 2022, 13, 7325-7331.	3.7	20
121	A novel C2-symmetric bisphosphane ligand with a chiral cyclopropane backbone: synthesis and application in the Rh(I)-catalyzed asymmetric 1,4-addition of arylboronic acids. Tetrahedron: Asymmetry, 2010, 21, 2768-2774.	1.8	19
122	Modeling of Anionic Polymerization in Flow With Coupled Variations of Concentration, Viscosity, and Diffusivity. Macromolecular Reaction Engineering, 2012, 6, 507-515.	0.9	19
123	Pressureâ€Accelerated Azide–Alkyne Cycloaddition: Micro Capillary versus Autoclave Reactor Performance. ChemSusChem, 2015, 8, 504-512.	3.6	19
124	Access to cyclic gem-difluoroacyl scaffolds via electrochemical and visible light photocatalytic radical tandem cyclization of heteroaryl chlorodifluoromethyl ketones. Chemical Communications, 2017, 53, 5653-5656.	2.2	19
125	Chiral imidate–ferrocenylphosphanes: synthesis and application as P,N-ligands in iridium(i)-catalyzed hydrogenation of unfunctionalized and poorly functionalized olefins. Organic and Biomolecular Chemistry, 2012, 10, 8539.	1.5	18
126	Energyâ€Efficient Solar Photochemistry with Luminescent Solar Concentrator Based Photomicroreactors. Angewandte Chemie, 2019, 131, 14512-14516.	1.6	18

#	Article	IF	CITATIONS
127	Photocatalytic trifluoromethoxylation of arenes and heteroarenes in continuous-flow. Beilstein Journal of Organic Chemistry, 2020, 16, 1305-1312.	1.3	18
128	Screening of functional solvent system for automatic aldehyde and ketone separation in aldol reaction: A combined COSMO-RS and experimental approach. Chemical Engineering Journal, 2020, 385, 123399.	6.6	17
129	Continuous-Flow Synthesis of Pyrylium Tetrafluoroborates: Application to Synthesis of Katritzky Salts and Photoinduced Cationic RAFT Polymerization. Organic Letters, 2021, 23, 2042-2047.	2.4	17
130	CFD analysis of a luminescent solar concentrator-based photomicroreactor (LSC-PM) with feedforward control applied to the synthesis of chemicals under fluctuating light intensity. Chemical Engineering Research and Design, 2020, 153, 626-634.	2.7	16
131	Dehydrogenative Azolation of Arenes in a Microflow Electrochemical Reactor. Journal of Organic Chemistry, 2021, 86, 16195-16203.	1.7	16
132	The development of luminescent solar concentrator-based photomicroreactors: a cheap reactor enabling efficient solar-powered photochemistry. Photochemical and Photobiological Sciences, 2022, 21, 705-717.	1.6	16
133	Efficient one-step synthesis of chiral bidentate oxazoline-alcohol ligands via a cyclic imidate ester rearrangement. Tetrahedron: Asymmetry, 2009, 20, 1962-1968.	1.8	15
134	Photocatalytic deaminative benzylation and alkylation of tetrahydroisoquinolines with N-alkylpyrydinium salts. Beilstein Journal of Organic Chemistry, 2020, 16, 809-817.	1.3	15
135	Boosting the valorization of biomass and green electrons to chemical building blocks: A study on the kinetics and mass transfer during the electrochemical conversion of HMF to FDCA in a microreactor. Chemical Engineering Journal, 2022, 438, 135393.	6.6	15
136	Novel C2-symmetric bisoxazolines with a chiral trans-(2R,3R)-diphenylcyclopropane backbone: preparation and application in several enantioselective catalytic reactions. Tetrahedron: Asymmetry, 2010, 21, 2275-2280.	1.8	14
137	Iridium(I)-Catalyzed <i>Ortho</i> -Directed Hydrogen Isotope Exchange in Continuous-Flow Reactors. Journal of Flow Chemistry, 2015, 5, 2-5.	1.2	14
138	Flow chemistry experiments in the undergraduate teaching laboratory: synthesis of diazo dyes and disulfides. Journal of Flow Chemistry, 2021, 11, 7-12.	1.2	14
139	Photocatalytic Câ^'H Azolation of Arenes Using Heterogeneous Carbon Nitride in Batch and Flow. ChemSusChem, 2021, 14, 5265-5270.	3.6	14
140	A supported aqueous phase catalyst coating in micro flow Mizoroki–Heck reaction. Tetrahedron Letters, 2013, 54, 2194-2198.	0.7	13
141	Development of an Offâ€Grid Solarâ€Powered Autonomous Chemical Miniâ€Plant for Producing Fine Chemicals. ChemSusChem, 2021, 14, 5417-5423.	3.6	13
142	Improving Energy Efficiency of Process of Direct Adipic Acid Synthesis in Flow Using Pinch Analysis. Industrial & Engineering Chemistry Research, 2013, 52, 7827-7835.	1.8	12
143	Continuous ruthenium-catalyzed methoxycarbonylation with supercritical carbon dioxide. Catalysis Science and Technology, 2016, 6, 4712-4717.	2.1	12
144	Continuous-Flow In-Line Solvent-Swap Crystallization of Vitamin D ₃ . Organic Process Research and Development, 2018, 22, 178-189.	1.3	12

#	Article	IF	CITATIONS
145	A Fully Automated Continuousâ€Flow Platform for Fluorescence Quenching Studies and Stern–Volmer Analysis. Angewandte Chemie, 2018, 130, 11448-11452.	1.6	12
146	Photocatalytic generation of ligated boryl radicals from tertiary amine-borane complexes: An emerging tool in organic synthesis. Chem Catalysis, 2022, 2, 957-966.	2.9	12
147	Electrochemical Hydroxylation of Electronâ€Rich Arenes in Continuous Flow. European Journal of Organic Chemistry, 2022, 2022, .	1.2	11
148	trans-(2R,3R)-2,3-Diphenylcyclopropane-1,1-dimethanol: a pivotal diol for the synthesis of novel C2-symmetric ligands for asymmetric transition metal catalysis. Tetrahedron: Asymmetry, 2010, 21, 2321-2328.	1.8	10
149	The Claisen Rearrangement – Part 2: Impact Factor Analysis of the Claisen Rearrangement, in Batch and in Flow. ChemBioEng Reviews, 2014, 1, 244-261.	2.6	10
150	Ferrocene-derived P,N ligands: synthesis and application in enantioselective catalysis. Green Processing and Synthesis, 2013, 2, .	1.3	9
151	The Claisen Rearrangement – Part 1: Mechanisms and Transition States, Revisited with Quantum Mechanical Calculations and Ultrashort Pulse Spectroscopy. ChemBioEng Reviews, 2014, 1, 230-240.	2.6	9
152	Laserâ€Mediated Photoâ€Highâ€p,T Intensification of Vitamin D ₃ Synthesis in Continuous Flow. ChemPhotoChem, 2018, 2, 922-930.	1.5	9
153	Visibleâ€Lightâ€Promoted Ironâ€Catalyzed C(sp 2)–C(sp 3) Kumada Crossâ€Coupling in Flow. Angewandte Chemie, 2019, 131, 13164-13168.	1.6	9
154	Rhodium/olefin-catalyzed reaction of arylboronic acids with an α-acetamido acrylic ester: Mizoroki–Heck-type reaction versus asymmetric conjugate addition. Tetrahedron: Asymmetry, 2010, 21, 540-543.	1.8	8
155	Window of opportunity – potential of increase in profitability using modular compact plants and micro-reactor based flow processing. Green Processing and Synthesis, 2012, 1, .	1.3	8
156	Industrial Photochemistry: From Laboratory Scale to Industrial Scale. , 2017, , 245-267.		8
157	On the performance of liquid-liquid Taylor flow electrochemistry in a microreactor – A CFD study. Chemical Engineering Journal, 2022, 427, 131443.	6.6	8
158	Connected nucleophilic substitution-Claisen rearrangement in flow – Analysis for kilo-lab process solutions with orthogonality. Chemical Engineering Journal, 2015, 281, 144-154.	6.6	7
159	Photo-Claisen rearrangement of allyl phenyl ether in microflow: Influence of phenyl core substituents and vision on orthogonality. Journal of Flow Chemistry, 2016, 6, 252-259.	1.2	7
160	Photo isomerization of cis â€cyclooctene to trans â€cyclooctene: Integration of a microâ€flow reactor and separation by specific adsorption. AICHE Journal, 2021, 67, e17067.	1.8	6
161	Direct Synthesis of α-Sulfenylated Ketones under Electrochemical Conditions. Journal of Organic Chemistry, 2022, 87, 5856-5865.	1.7	6
162	Metallic nanoparticles made in flow and their catalytic applications in micro-flow reactors for organic synthesis. Physical Sciences Reviews, 2016, 1, .	0.8	5

#	Article	IF	CITATIONS
163	Flow Chemistry Perspective for C H Bond Functionalization. , 2017, , 275-288.		5
164	Decatungstateâ€Mediated C(sp 3)–H Heteroarylation via Radicalâ€Polar Crossover in Batch and Flow. Angewandte Chemie, 2021, 133, 18037-18041.	1.6	5
165	Effect of Acetonitrileâ€Based Crystallization Conditions on the Crystal Quality ofÂVitaminÂD ₃ . Chemical Engineering and Technology, 2017, 40, 2016-2024.	0.9	5
166	Rapid and Direct Photocatalytic C(sp 3)â^'H Acylation and Arylation in Flow. Angewandte Chemie, 2021, 133, 21447-21452.	1.6	4
167	Repeatable molecularly recyclable semiâ€aromatic polyesters derived from lignin. Journal of Polymer Science, 2020, 58, 1655-1663.	2.0	4
168	Accelerating the Photocatalytic Atom Transfer Radical Addition Reaction Induced by Bi ₂ O ₃ with Amines: Experiment and Computation. ChemCatChem, 2022, 14, .	1.8	3
169	Claisenâ€Umlagerung im Rühr―und Durchflussbetrieb: Verstädnis des Mechanismus und Steuerung der Einflussgrößen. Chemie-Ingenieur-Technik, 2014, 86, 2160-2179.	0.4	2
170	Innenrücktitelbild: A Leafâ€Inspired Luminescent Solar Concentrator for Energyâ€Efficient Continuousâ€Flow Photochemistry (Angew. Chem. 4/2017). Angewandte Chemie, 2017, 129, 1179-1179.	1.6	1
171	Heterogeneous Photoreactions in Continuous Flow. , 2017, , 199-212.		1
172	Solar Photochemistry in Flow. Topics in Current Chemistry Collections, 2020, , 1-27.	0.2	1
173	Green is the future of chemistry: report of Taminco's second Green Footsteps Event at the i-SUP 2012. Green Processing and Synthesis, 2012, 1, .	1.3	0
174	Chemical photocatalysis. Green Processing and Synthesis, 2013, 2, .	1.3	0
175	CHAPTER 13. Cross-Coupling Chemistry in Continuous Flow. RSC Catalysis Series, 0, , 610-644.	0.1	Ο
176	5th International Conference of the Flow Chemistry Society (Berlin, Germany, February 17–18, 2015). Green Processing and Synthesis, 2014, 3, .	1.3	0
177	3. Metallic nanoparticles made in flow and their catalytic applications in micro-flow reactors for organic synthesis. , 2015, , 103-133.		Ο
178	Meet The Flow Chemist – Dr. Amol A. Kulkarni. Journal of Flow Chemistry, 2020, 10, 471.	1.2	0
179	Meet the flow chemist. Journal of Flow Chemistry, 2020, 10, 585-588.	1.2	0
180	Meet the flow chemists Prof. Steve Christie and Prof. Shawn Collins. Journal of Flow Chemistry, 2021, 11, 3-6.	1.2	0

#	Article	IF	CITATIONS
181	Meet The Flow Chemist – Prof. Ryan L. Hartman. Journal of Flow Chemistry, 2021, 11, 215-216.	1.2	0
182	Meet the flow chemist $\hat{a} \in $ Prof. Norbert Kockmann. Journal of Flow Chemistry, 0, , 1.	1.2	0
183	Meet the Flow Chemist – Dr. Anna G. Slater. Journal of Flow Chemistry, 2021, 11, 705-706.	1.2	0
184	Meet The Flow Chemist – Alain George. Journal of Flow Chemistry, 2021, 11, 703-704.	1.2	0