
Satoru Karasawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3883467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Alkynyl Group on Reactivity in Photoaffinity Labeling with 2â€Thienylâ€&ubstituted αâ€Ketoamide. Chemistry - A European Journal, 2022, , .	3.3	0
2	Acid responsiveness of emissive morpholinyl aminoquinolines and their use for cell fluorescence imaging. Organic and Biomolecular Chemistry, 2022, 20, 4342-4351.	2.8	4
3	Development of Reversible Acid-Base Detection Reagents Based on Push-pull Type Aminonaphthyridine and Aminoquinoline Derivatives. Bunseki Kagaku, 2022, 71, 119-131.	0.2	0
4	Basic Fluorescent Protonation-Type pH Probe Sensitive to Small Δp <i>K</i> _a of Methanol and Ethanol. Analytical Chemistry, 2022, 94, 10400-10407.	6.5	9
5	Push–Pull Bisnaphthyridylamine Supramolecular Nanoparticles: Polarityâ€Induced Aggregation and Crystallizationâ€Induced Emission Enhancement and Fluorescence Resonance Energy Transfer. Chemistry - A European Journal, 2021, 27, 3039-3046.	3.3	10
6	Artificial Host Molecules to Covalently Capture 8-Nitro-cGMP in Neutral Aqueous Solutions and in Cells. Bioconjugate Chemistry, 2021, 32, 385-393.	3.6	2
7	Ï€â€Extended Pushâ€Pullâ€Type Bicyclic Fluorophores Based on Quinoline and Naphthyridine Frameworks with an Iminophosphorane Fragment. Asian Journal of Organic Chemistry, 2021, 10, 1123-1130.	2.7	2
8	High- <i>Z</i> ′ Crystal Structure of Tricyclic Imidazonaphthyridine Derivatives and the Thermal Profiles of Their Polymorphs. Crystal Growth and Design, 2021, 21, 5251-5260.	3.0	8
9	Characterization of Push–Pull-Type Benzo[X]quinoline Derivatives (X =gorf): Environmentally Responsive Fluorescent Dyes with Multiple Functions. Journal of Organic Chemistry, 2020, 85, 13177-13190.	3.2	11
10	A fully synthetic 6-aza-artemisinin bearing an amphiphilic chain generates aggregates and exhibits anti-cancer activities. Organic and Biomolecular Chemistry, 2020, 18, 5339-5343.	2.8	10
11	Characterization and Water-Proton Longitudinal Relaxivities of Liposome-Type Radical Nanoparticles Prepared via a Supramolecular Approach. Langmuir, 2020, 36, 5280-5286.	3.5	5
12	Photophysical Properties of Emissive Pyrido[3,2â€ <i>c</i>]carbazole Derivatives and Apoptosis Induction: Development towards Theranostic Agents in Response to Light Stimulus. Chemistry - an Asian Journal, 2019, 14, 3938-3945.	3.3	5
13	Fluorescence Properties and Exciplex Formation of Emissive Naphthyridine Derivatives: Application as Sensors for Amines. Chemistry - A European Journal, 2019, 25, 14943-14952.	3.3	17
14	Development of Turn-On Probes for Acids Triggered by Aromaticity Enhancement Using Tricyclic Amidine Derivatives. Journal of Organic Chemistry, 2019, 84, 6612-6622.	3.2	12
15	Effects of Substituents on the Properties of Metal-Free MRI Contrast Agents. ACS Omega, 2019, 4, 20715-20723.	3.5	5
16	Selective synthesis of substituted amino-quinoline derivatives by C-H activation and fluorescence evaluation of their lipophilicity-responsive properties. Scientific Reports, 2019, 9, 17723.	3.3	9
17	Self-Assembled Biradical Ureabenzene Nanoparticles for Magnetic Resonance Imaging. ACS Applied Nano Materials, 2018, 1, 6967-6975.	5.0	7
18	Fluorescence Tumor-Imaging Using a Thermo-Responsive Molecule with an Emissive Aminoquinoline Derivative, Nanomaterials, 2018, 8, 782.	4.1	7

SATORU KARASAWA

#	Article	IF	CITATIONS
19	Internalâ€Edgeâ€Substituted Coumarinâ€Fused [6]Helicenes: Asymmetric Synthesis, Structural Features, and Control of Selfâ€Assembly. Chemistry - A European Journal, 2018, 24, 14617-14621.	3.3	34
20	Effect of Hydrophobicity on the Self-Assembly Behavior of Urea Benzene Derivatives in Aqueous Solution. Applied Sciences (Switzerland), 2018, 8, 1080.	2.5	2
21	Self-Assembly Behavior of Emissive Urea Benzene Derivatives Enables Heat-Induced Accumulation in Tumor Tissue. Nano Letters, 2017, 17, 2397-2403.	9.1	25
22	Two-step transformation of p-anisolylaminoquinoline derivatives induced by conformation- and packing-dominated processes. Dyes and Pigments, 2017, 143, 401-408.	3.7	9
23	Water-Proton Relaxivities of Radical Nanoparticles Self-Assembled via Hydration or Dehydration Processes. Langmuir, 2017, 33, 7810-7817.	3.5	9
24	Thermal- and pH-Dependent Size Variable Radical Nanoparticles and Its Water Proton Relaxivity for Metal-Free MRI Functional Contrast Agents. Journal of Organic Chemistry, 2016, 81, 8351-8362.	3.2	13
25	Regioselective Photocyclizations of Di(quinolinyl)arylamines and Tri(quinolinyl)amine with Emission Color Changes and Photoreactionâ€induced Selfâ€Assemblies. Chemistry - A European Journal, 2016, 22, 7771-7781.	3.3	14
26	Crystalline transformations of dinaphthyridinylamine derivatives with alteration of solid-state emission in response to external stimuli. CrystEngComm, 2015, 17, 8825-8834.	2.6	14
27	Crystal Structures, Thermal Properties, and Emission Behaviors of <i>N</i> , <i>N</i> -R-Phenyl-7-amino-2,4-trifluoromethylquinoline Derivatives: Supercooled Liquid-to-Crystal Transformation Induced by Mechanical Stimuli. Crystal Growth and Design, 2014, 14, 2468-2478.	3.0	33
28	Unexpectedly large water-proton relaxivity of TEMPO incorporated into micelle-oligonucleotides. RSC Advances, 2013, 3, 3531.	3.6	12
29	Thermal Single Crystal to Single Crystal Transformation among Crystal Polymorphs in 2-Dimethylamino-5,7-bis(trifluoromethyl)-1,8-naphthyridine and in a 1-Quinoline Analogue. Crystal Growth and Design, 2013, 13, 4705-4713.	3.0	32
30	Polymorphic Equilibrium Responsive Thermal and Mechanical Stimuli in Light-emitting Crystals of <i>N</i> -Methylaminonaphthyridine. Organic Letters, 2012, 14, 6282-6285.	4.6	54
31	Crystal Structures and Emitting Properties of Trifluoromethylaminoquinoline Derivatives: Thermal Singleâ€Crystalâ€ŧo‣ingleâ€Crystal Transformation of Polymorphic Crystals That Emit Different Colors. Chemistry - A European Journal, 2012, 18, 15038-15048.	3.3	72
32	Assemblies of Functional Small-Sized Molecules Having 4-Amino-2,2,6,6-tetramethylpiperidine-1-oxyl Responsive to Heat and pH in Water and Their Water Proton Relaxivities. Langmuir, 2011, 27, 12709-12719.	3.5	24
33	Waterâ€proton relaxivity of hyperbranched polymers carrying TEMPO radicals. Magnetic Resonance in Chemistry, 2009, 47, 201-204.	1.9	14
34	Waterâ€proton relaxivities of DNA oligomers carrying TEMPO radicals. Magnetic Resonance in Chemistry, 2008, 46, 1055-1058.	1.9	15
35	Cyclic Single-Molecule Magnet in Heterospin System. Journal of the American Chemical Society, 2008, 130, 10460-10461.	13.7	90
36	Molecular Structure and Magnetic Properties of 1-Ethyl-2-(1-oxy-3-oxo-4,4,5,5-tetramethylimidazolin-2-yl)-3-methylimidazolium Arylcarboxylates and Other Salts. Journal of Organic Chemistry, 2008, 73, 8683-8693.	3.2	12

#	Article	IF	CITATIONS
37	Crystal Design of Monometallic Single-Molecule Magnets Consisting of Cobalt-Aminoxyl Heterospins. Journal of the American Chemical Society, 2008, 130, 3079-3094.	13.7	92
38	Magnetic property of 1:2 mixture of Co(p-tolsal)2; p-tolsal=N-p-tolylsalicylideniminato, and cyclic pentacarbene–pyridine with S=10/2 in dilute frozen solution. Polyhedron, 2007, 26, 1905-1911.	2.2	27
39	Magnetic Properties of Tetrakis[4-(α-diazobenzyl)pyridine]bis(thiocyanato-N)cobalt(II) in Frozen Solution after Irradiation. Formation of a Single-Molecule Magnet in Frozen Solution. Journal of the American Chemical Society, 2003, 125, 13676-13677.	13.7	96
40	Magnetic Behavior of a 3:2 Mixture of Bis(hexafluoroacetylacetonato)copper(II) and 1,3,5-Benzenetriyltris(4-pyridyldiazomethane) in a Frozen Solution after Irradiation:Â Photochemical Formation of a Solid Solution Magnet. Journal of the American Chemical Society, 2001, 123, 9685-9686.	13.7	56