Koichi Mikami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/388333/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluorinated Carbonyl and Olefinic Compounds: Basic Character and Asymmetric Catalytic Reactionsâ€. Chemical Reviews, 2004, 104, 1-16.	47.7	439
2	Symmetry Breaking in Asymmetric Catalysis:  Racemic Catalysis to Autocatalysis. Chemical Reviews, 2003, 103, 3369-3400.	47.7	207
3	Super High Throughput Screening (SHTS) of Chiral Ligands and Activators: Asymmetric Activation of Chiral Diol-Zinc Catalysts by Chiral Nitrogen Activators for the Enantioselective Addition of Diethylzinc to Aldehydes. Angewandte Chemie - International Edition, 1999, 38, 497-501.	13.8	194
4	Asymmetric synthesis by enantiomer-selective activation of racemic catalysts. Nature, 1997, 385, 613-615.	27.8	175
5	A highly efficient asymmetric Suzuki–Miyaura coupling reaction catalyzed by cationic chiral palladium(ii) complexes. Chemical Communications, 2004, , 2082-2083.	4.1	121
6	Highly Efficient and Practical Optical Resolution of 2-Amino-2′-hydroxy-1,1′-binaphthyl by Molecular Complexation withN-Benzylcinchonidium Chloride: A Direct Transformation to Binaphthyl Amino Phosphine. Chemistry - A European Journal, 1999, 5, 1734-1737.	3.3	116
7	Chiral titanium complex-catalyzed carbonyl-ene reaction with glyoxylate: Remarkable positive nonlinear effect. Tetrahedron, 1992, 48, 5671-5680.	1.9	100
8	Stable but Reactive Perfluoroalkylzinc Reagents: Application in Ligandâ€Free Copperâ€Catalyzed Perfluoroalkylation of Aryl Iodides. Chemistry - A European Journal, 2015, 21, 96-100.	3.3	99
9	Synergistic Effect: Hydroalkoxylation of Allenes through Combination of Enantiopure BIPHEPâ€Gold Complexes and Chiral Anions. Advanced Synthesis and Catalysis, 2010, 352, 3131-3135.	4.3	92
10	Copper-Catalyzed Difluoromethylation of Aryl Iodides with (Difluoromethyl)zinc Reagent. Organic Letters, 2016, 18, 3686-3689.	4.6	88
11	Development of (Trifluoromethyl)zinc Reagent as Trifluoromethyl Anion and Difluorocarbene Sources. Organic Letters, 2015, 17, 4996-4999.	4.6	85
12	Chiral Palladium(II)-Catalyzed Asymmetric Glyoxylateâ^'Ene Reaction:  Alternative Approach to the Enantioselective Synthesis of α-Hydroxy Esters. Organic Letters, 2000, 2, 4059-4062.	4.6	81
13	Rhodium atalyzed Hydrocarboxylation of Olefins with Carbon Dioxide. European Journal of Organic Chemistry, 2016, 2016, 3166-3170.	2.4	81
14	Enantiodiscrimination and Enantiocontrol of Neutral and Cationic PtII Complexes Bearing theTropos Biphep Ligand: Application to Asymmetric Lewis Acid Catalysis. Angewandte Chemie - International Edition, 2005, 44, 7257-7260.	13.8	80
15	Dynamic Asymmetric Catalysis by Diphenylphosphinoferrocene (DPPF)â ``Nickel Complexes through Control of Axial Chirality by Chiral Diamines. Organic Letters, 2002, 4, 99-101.	4.6	79
16	Radical Trifluoromethylation of Ketone Silyl Enol Ethers by Activation with Dialkylzinc. Organic Letters, 2006, 8, 4671-4673.	4.6	78
17	Racemic butTropos(Chirally Flexible) BIPHEP Ligands for Rh(I)-Complexes:  Highly Enantioselective Ene-Type Cyclization of 1,6-Enynes. Organic Letters, 2004, 6, 3699-3701.	4.6	77
18	Palladium-Catalyzed Negishi Cross-Coupling Reaction of Aryl Halides with (Difluoromethyl)zinc Reagent. Organic Letters, 2016, 18, 3690-3693.	4.6	72

#	Article	IF	CITATIONS
19	Resolution of Pd Catalyst withtroposBiphenylphosphine (BIPHEP) Ligand by DM-DABN:  Asymmetric Catalysis by an Enantiopure BIPHEPâ^'Pd Complex1. Organic Letters, 2002, 4, 91-94.	4.6	71
20	Asymmetric Activation of the Pd Catalyst Bearing theTroposBiphenylphosphine (BIPHEP) Ligand with the Chiral Diaminobinaphthyl (DABN) Activator1. Organic Letters, 2002, 4, 95-97.	4.6	70
21	"Achiral―Benzophenone Ligand for Highly Enantioselective Ru Catalysts in Ketone Hydrogenation. Organic Letters, 2006, 8, 1517-1519.	4.6	66
22	Chiral bis-trifluoromethanesulfonylamide as a chiral BrÃ,nsted acid catalyst for the asymmetric hetero Diels–Alder reaction with Danishefsky's diene. Tetrahedron Letters, 2005, 46, 6355-6358.	1.4	58
23	General Synthetic Route to Chiral Flexible Biphenylphosphine Ligands:  The Use of a Chiral Additive Enables the Preparation and Observation of Metal Complexes Incorporating the Enantiopure Formâ€. Organic Letters, 2001, 3, 243-245.	4.6	55
24	Palladium atalyzed Enantioselective Ene and Aldol Reactions with Isatins, Keto Esters, and Diketones: Reliable Approach to Chiral Tertiary Alcohols. European Journal of Organic Chemistry, 2011, 2011, 62-65.	2.4	51
25	Activation of Cĩ٤¿F Bonds in Preference to Cĩ٤¿l Bonds: Difluoromethylation of Lithium Enolates with Trifluoromethyl Iodide. Angewandte Chemie - International Edition, 2010, 49, 3819-3822.	13.8	47
26	Dynamic Chirality Control of (Xyl-)BIPHEP Ligands Leading to their Diastereomerically Pure Ru Complexes with a ChiralN-Substituted DPEN. Advanced Synthesis and Catalysis, 2001, 343, 284-288.	4.3	44
27	Enantioselective Heck-Type Reaction Catalyzed bytropos-Pd(II) Complex with Chiraphos Ligand. Advanced Synthesis and Catalysis, 2005, 347, 1569-1575.	4.3	43
28	Recent Advances in Catalytic Asymmetric Desymmetrization Reactions. , 0, , 275-311.		43
29	Cu-catalyzed trifluoromethylation of aryl iodides with trifluoromethylzinc reagent prepared in situ from trifluoromethyl iodide. Beilstein Journal of Organic Chemistry, 2013, 9, 2404-2409.	2.2	43
30	A New N,P-Ligand with Achiral gem-Dimethyloxazoline for Palladium(II)-Catalyzed Cyclization of 1,6-Enynes: Transition State Probe for the N/C trans Mode in Mizorokiâ^'Heck-Type Câ^'C Bond Formation. European Journal of Organic Chemistry, 2003, 2003, 2552-2555.	2.4	42
31	Siladifluoromethylation and Difluoromethylation onto C(sp ³), C(sp ²), and C(sp) Centers Using Ruppert–Prakash Reagent and Fluoroform. Organic Letters, 2016, 18, 3354-3357.	4.6	40
32	Asymmetric Catalysis Special Feature Part II: Palladium-catalyzed carbocyclization of 1,6-enynes leading to six-membered rings or oxidized five-membered trifluoroacetates. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5767-5769.	7.1	37
33	Palladium-Catalyzed Isobenzofuran Generation under Neutral Conditions via Oxidative Addition to Lactol Methyl Ether. Organic Letters, 2002, 4, 3355-3357.	4.6	36
34	Achiral benzophenone ligand–rhodium complex with chiral diamine activator for high enantiocontrol in asymmetric transfer hydrogenation. Chemical Communications, 2006, , 2365-2367.	4.1	36
35	Access to Airâ€&table 1,3â€Diphosphacyclobutaneâ€2,4â€diyls by an Arylation Reaction with Arynes. Angewandte Chemie - International Edition, 2016, 55, 7525-7529.	13.8	36
36	Catalytic Asymmetric Synthesis of Tertiary Alcohols and Oxetenes Bearing a Difluoromethyl Group. Organic Letters, 2015, 17, 5108-5111.	4.6	35

#	Article	IF	CITATIONS
37	Highly enantioselective spiro cyclization of 1,6-enynes catalyzed by cationic skewphos rhodium(i) complex. Chemical Communications, 2004, , 98-99.	4.1	34
38	TroposorAtroposNature of Rhodium Complexes Bearing a Tetrakis(phosphanyl)terphenyl Ligand: Highly Enantioselective Catalysis of Ene-Type Cyclization. Organic Letters, 2005, 7, 5777-5780.	4.6	34
39	α-Difluoromethylation on sp3 Carbon of Nitriles Using Fluoroform and Ruppert–Prakash Reagent. Organic Letters, 2015, 17, 4882-4885.	4.6	34
40	Nickel-Catalyzed Aromatic Cross-Coupling Difluoromethylation of Grignard Reagents with Difluoroiodomethane. Organic Letters, 2018, 20, 5340-5343.	4.6	31
41	Asymmetric Activation/Deactivation of Racemic Ru Catalysts for Highly Enantioselective Hydrogenation Irrespective of Ketonic Substrates: Molecular Design of Dimethylbinaphthylamine for Enantiomeric Catalysts Discrimination. Advanced Synthesis and Catalysis, 2003, 345, 246-254.	4.3	30
42	Carbon–carbon bond cleavage for Cu-mediated aromatic trifluoromethylations and pentafluoroethylations. Beilstein Journal of Organic Chemistry, 2015, 11, 2661-2670.	2.2	30
43	Theoretical Studies on the Diastereoselectivity in the Lewis Acid Catalyzed CarbonylEne Reaction: A Fundamental Role of Electrostatic Interaction. Helvetica Chimica Acta, 2002, 85, 4264-4271.	1.6	28
44	Asymmetric Deactivation of Racemic BINAP-Ru(II) Catalysts through Complete Enantiomer Discrimination by Dimethylbinaphthylamine:  Highly Enantioselective Hydrogenation of Olefin and β-Keto Ester. Organic Letters, 2002, 4, 1643-1645.	4.6	27
45	Theoretical Studies on the Mechanism of the Tropo-Inversion of the BIPHEP-RuCl2/DPEN Complex Using the ONIOM Method. Organometallics, 2002, 21, 5847-5851.	2.3	26
46	Tandem Reductive Perfluoroalkylation of Esters with Perfluoroalkyl Titanate-Type Reagents. Journal of the American Chemical Society, 2007, 129, 11686-11687.	13.7	26
47	Precatalyst Effects on Pd-Catalyzed Cross-Coupling Difluoromethylation of Aryl Boronic Acids. ACS Catalysis, 2019, 9, 417-421.	11.2	26
48	Metal enolates ofα-CF3 ketones: theoretical guideline, direct generation, and synthetic use. Chemical Record, 2006, 6, 1-11.	5.8	25
49	Chemical Detection of Hydrogen Fluoride by the Phosphorus Congener of Cyclobutane-1,3-diyl. Inorganic Chemistry, 2015, 54, 8778-8785.	4.0	25
50	Effect of the trifluoromethyl group on torquoselectivity in the 4Ï€ ring-opening reaction of oxetenes: stereoselective synthesis of tetrasubstituted olefins. Chemical Science, 2014, 5, 410-415.	7.4	24
51	Stable Axial Chirality in Metal Complexes Bearing 4,4′-Substituted BIPHEPs: Application to Catalytic Asymmetric Carbon–Carbon Bond-Forming Reactions. Bulletin of the Chemical Society of Japan, 2012, 85, 201-208.	3.2	22
52	Ï€â€Extended DPCB for Activationâ€Free Homogeneous Gold Catalysis. ChemCatChem, 2014, 6, 2292-2297.	3.7	21
53	(2,5)-Ene Cyclization Catalyzed by Mesoporous Solid Acids:Â Isotope Labeling Study and ab Initio Calculation for Continuum from Concerted to Stepwise Ene Mechanism. Journal of Organic Chemistry, 2003, 68, 1081-1088.	3.2	20
54	Enantioselective Functionalization of Difluorocyclopropenes Catalyzed by Chiral Copper Complexes: Proposal for Chiral <i>gem</i> -Dimethyl and <i>tert</i> -Butyl Analogues. Journal of Organic Chemistry, 2020, 85, 7916-7924.	3.2	20

#	Article	IF	CITATIONS
55	One-pot synthesis of tropinone by tandem (domino) ene-type reactions of acetone silyl enol ethers. Chemical Communications, 2002, , 2626-2627.	4.1	19
56	Mono-, Di-, and Trifluoroalkyl Substituent Effects on the Torquoselectivities of Cyclobutene and Oxetene Electrocyclic Ring Openings. Journal of Organic Chemistry, 2015, 80, 11768-11772.	3.2	19
57	<i>gem</i> -Digold Acetylide Complexes for Catalytic Intermolecular [4 + 2] Cycloaddition: Having Two Gold Centers Is Better for Asymmetric Catalysis. Organic Letters, 2018, 20, 7353-7357.	4.6	19
58	Observation of a Metastable Pâ€Heterocyclic Radical by Muonium Addition to a 1,3â€Ðiphosphacyclobutaneâ€2,4â€diyl. Angewandte Chemie - International Edition, 2018, 57, 8608-8613.	13.8	19
59	Molecular design of DABNTf as a highly efficient resolving reagent for racemic Pd complex withTropos biphenylphosphine (BIPHEP) ligand: Circular dichroism (CD) spectra of enantiopure BIPHEP-Pd complex. Chirality, 2003, 15, 105-107.	2.6	18
60	Kinetic analysis of positive nonlinear effects ((+)-NLE) for dimeric rather than trimeric nature of binaphthol-derived titanium (BINOL–Ti) catalyst. Tetrahedron, 2004, 60, 7715-7719.	1.9	18
61	Computational S N 2â€7ype Mechanism for the Difluoromethylation of Lithium Enolate with Fluoroform through Bimetallic Câ~'F Bond Dual Activation. Chemistry - A European Journal, 2016, 22, 8796-8800.	3.3	18
62	Fluorous Substituentâ€Based Enantiomer and Diastereomer Separation: Orthogonal Use of HPLC Columns for the Synthesis of Nonproteinogenic Polyfluoro Amino Acids and Peptides. European Journal of Organic Chemistry, 2008, 2008, 1331-1335.	2.4	17
63	Direct Racemic Mixture Synthesis of Fluorinated Amino Acids by Perfluoroalkyl Radical Addition to Dehydroamino Acids Terminated by Asymmetric Protonation. European Journal of Organic Chemistry, 2010, 2010, 2461-2464.	2.4	17
64	Title is missing!. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1983, 41, 100-116.	0.1	17
65	History and Perspective of Chiral Organic Catalysts. , 0, , 313-358.		16
66	1, 4- and 1, 5-Remote Stereocontrol via Relative and Internal Asymmetric Induction. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1993, 51, 3-13.	0.1	15
67	Lewis Acid Catalyzed Asymmetric Three omponent Coupling Reaction: Facile Synthesis of αâ€Fluoromethylated Tertiary Alcohols. Chemistry - A European Journal, 2015, 21, 17565-17569.	3.3	14
68	Stereoselective Catalytic Synthesis of Alkynylated Phosphaethenes Leading to Activationâ€Free Gold Catalysis. European Journal of Organic Chemistry, 2017, 2017, 6889-6900.	2.4	13
69	CF ₃ â€Inspired Synthesis of Airâ€Tolerant 9â€Phosphaanthracenes that Feature Fluorescence and Crystalline Polymorphs. Chemistry - an Asian Journal, 2018, 13, 830-837.	3.3	13
70	Asymmetric "Acetylenic―[3+2] Cycloaddition of Nitrones Catalyzed by Cationic Chiral Pd ^{II} Lewis Acid. Chemistry - an Asian Journal, 2018, 13, 2838-2841.	3.3	13
71	Direct Preparation of Trifluoromethylindium Reagents from Trifluoromethyl Iodide: Effective Trifluoromethylation and Perfluoroalkylation Reagents. European Journal of Organic Chemistry, 2012, 2012, 7043-7047.	2.4	12
72	Ligand-Less Iron-Catalyzed Aromatic Cross-Coupling Difluoromethylation of Grignard Reagents with Difluoroiodomethane. Journal of Organic Chemistry, 2019, 84, 6483-6490.	3.2	12

#	Article	IF	CITATIONS
73	Cyclicâ€Protected Hexafluoroacetone as an Airâ€Stable Liquid Reagent for Trifluoromethylations. European Journal of Organic Chemistry, 2016, 2016, 4099-4104.	2.4	11
74	Chiral copper-catalyzed enantioselective Michael difluoromethylation of arylidene meldrum's acids with (difluoromethyl)zinc reagents. Tetrahedron, 2019, 75, 4099-4103.	1.9	10
75	Ligand Design for Catalytic Asymmetric Reduction. , 0, , 1-32.		9
76	Airâ€Tolerant 1â€Aminoâ€1,3â€diphosphacyclobutaneâ€2,4â€diyls Featuring Strong Electronâ€Donating Proper and Small HOMO–LUMO Gaps. European Journal of Inorganic Chemistry, 2017, 2017, 3048-3052.	ties 2.0	9
77	Cationic Chiral Pd atalyzed "Acetylenic―Diels–Alder Reaction: Computational Analysis of Reversal in Enantioselectivity. Chemistry - an Asian Journal, 2018, 13, 2842-2846.	3.3	9
78	Regiocontrolled Heptafluoroisopropylation of Aromatic Halides by Copper(I) Carboxylates with Heptafluoroisopropyl-Zinc Reagents. Organic Letters, 2019, 21, 1093-1097.	4.6	9
79	Design of Phosphinic Acid Catalysts with the Closest Stereogenicity at the α-Position: Synthesis and Application of α-Stereogenic Perfluoroalkyl Phosphinic Acid Catalysts. Organic Letters, 2019, 21, 3387-3391.	4.6	9
80	Benchâ€&table Electrophilic Fluorinating Reagents for Highly Selective Mono―and Difluorination of Silyl Enol Ethers. Chemistry - A European Journal, 2021, 27, 11919-11925.	3.3	9
81	Dynamic Chirality Control of <i>tropos</i> DPCBâ€digold Skeleton by Chiral Binaphthyldicarboxylate. Chemistry - an Asian Journal, 2016, 11, 823-827.	3.3	8
82	Asymmetric Synthesis of Antithrombotic Agent M55529: The First Enantioselective CyclicN,O-Acetal Formation. European Journal of Organic Chemistry, 2006, 2006, 2269-2272.	2.4	7
83	Asymmetric Synthesis of Antithrombotic Agents M58163 and M58169: Dynamic Kinetic Resolution in Amide Formation Catalyzed by La-Linked BINOL Complex. European Journal of Organic Chemistry, 2006, 2006, 5454-5457.	2.4	7
84	Ligand Design for CC Bond Formation. , 0, , 59-100.		7
85	Fluorous "Racemic―Mixture Synthesis: Simultaneous Strategy for Demixing and Enantioseparation of Racemic Fluorous-Tagged Products. European Journal of Organic Chemistry, 2007, 2007, 1730-1733.	2.4	7
86	Copper-catalyzed asymmetric methylation of fluoroalkylated pyruvates with dimethylzinc. Beilstein Journal of Organic Chemistry, 2018, 14, 576-582.	2.2	7
87	Palladium atalyzed Negishi Cross oupling Reaction of Difluoroiodomethane with Arylzinc Reagents. Asian Journal of Organic Chemistry, 2019, 8, 698-701.	2.7	7
88	An <i>N</i> -Fluorinated Imide for Practical Catalytic Imidations. Journal of the American Chemical Society, 2022, 144, 2107-2113.	13.7	7
89	Diastereomer Effects on Antiferroelectricity and Ferroelectricity of the Newly Synthesized Liquid Crystals. Molecular Crystals and Liquid Crystals, 1997, 303, 165-170.	0.3	6

90 Chiral Bifunctional Acid/Base Catalysts. , 0, , 383-410.

#	Article	IF	CITATIONS
91	Synthetic Methodologies for Perfluoroaryl-Substituted (Diaryl)methylphosphonates, -Phosphinates via S _N Ar Reaction. Journal of Organic Chemistry, 2019, 84, 12281-12291.	3.2	6
92	Methyl to trifluoromethyl substitution as a strategy to increase the membrane permeability of short peptides. Organic and Biomolecular Chemistry, 2021, 19, 9386-9389.	2.8	6
93	Asymmetric Activation and Deactivation of Racemic Catalysts. , 0, , 221-257.		5
94	The Air-Stable P-Heterocyclic Biradical for OFET Devices. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 854-857.	1.6	5
95	Diastereomer Liquid Crystalline CF ₃ Molecules: Conformational Probe for (Anti)Ferroelectricity and Spontaneous Resolution of the Racemates. Molecular Crystals and Liquid Crystals, 2000, 346, 41-49.	0.3	4
96	Ligand Design for Oxidation. , 0, , 33-58.		4
97	Chiral-Metal-Complex-Catalyzed Aliphatic Claisen Rearrangement. , 0, , 25-43.		4
98	Dynamic Kinetic Resolution for the Catalytic Asymmetric Total Synthesis of Antithrombotic Agents M58163 and M58169. Advanced Synthesis and Catalysis, 2007, 349, 617-628.	4.3	4
99	Palladium-Catalyzed Arylation of a Sterically Demanding <i>gem</i> -Dibromophosphaethene. ChemistrySelect, 2016, 1, 5260-5264.	1.5	4
100	Perfluoroalkyl Grignard Reagents: NMR Study of 1-Heptafluoropropylmagnesium Chloride in Solution. Journal of Organic Chemistry, 2016, 81, 5922-5928.	3.2	4
101	Facile Câ^'F Bond Activation Approach to FAMTâ€Based Difluoromethylâ€BNCT Drug Candidates. Helvetica Chimica Acta, 2021, 104, e2000211.	1.6	4
102	Effects of Conformation of Diastereomer Liquid Crystals on the Preference of Antiferroelectricity. Molecular Crystals and Liquid Crystals, 1999, 328, 131-137.	0.3	3
103	Chiral BrÃ,nsted/Lewis Acid Catalysts. , 0, , 359-381.		3
104	Regio- and Stereochemical Control in Polymerization of Propylene or Styrene Catalyzed by Kaminsky-Sinn-type Titanocene, Zirconocene and Hafnocene Complexes Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1994, 52, 716-721.	0.1	3
105	Activation of Small Molecules (Cĩ£¾O, HCN, RNC, and CO2). , 0, , 101-127.		2
106	Nonlinear Effects in Asymmetric Catalysis. , 0, , 207-219.		2
107	Asymmetric Autocatalysis with Amplification of Chirality and Origin of Chiral Homogeneity of Biomolecules. , 0, , 259-274.		2
108	2,3â€Dihydroâ€1 <i>H</i> â€naphtho[1,8â€ <i>cd</i>]borinine as a Potent Precursor for Openâ€Shell Singlet Bâ€Heterocycles. European Journal of Inorganic Chemistry, 2017, 2017, 2936-2939.	2.0	2

#	Article	IF	CITATIONS
109	Monoâ€Gold(I)â€Catalyzed Enantioselective Intermolecular Reaction of Ynones with Styrenes: Tandem Diels–Alder and Ene Sequence. Helvetica Chimica Acta, 2021, 104, e2000198.	1.6	2
110	Synthesis of Medium Ring Compounds via Sigmatropic Rearrangements. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1980, 38, 381-394.	0.1	2
111	New Aspect of Enone Photochemistry: Asymmetric Photochemical Carbon Skeletal Rearrangement of .ALPHAHydroxymethylenone. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2004, 62, 598-606.	0.1	2
112	Fluorinated Synthon: Asymmetric Catalytic Reactions. ACS Symposium Series, 2005, , 356-367.	0.5	1
113	Fluorous Nanoflow Microreactor: Nanoflow Microreactor with Fluorous Lanthanide Catalysts for Increase in Reactivity and Selectivity. ACS Symposium Series, 2007, , 190-206.	0.5	1
114	Trifluoromethylation of Metal Enolates and Theoretical Guideline. ACS Symposium Series, 2007, , 2-24.	0.5	1
115	Highly Efficient and Practical Optical Resolution of 2-Amino-2′-hydroxy-1,1′-binaphthyl by Molecular Complexation with N-Benzylcinchonidium Chloride: A Direct Transformation to Binaphthyl Amino Phosphine. Chemistry - A European Journal, 1999, 5, 1734-1737.	3.3	1
116	Development of Catalytic Asymmetric Reactions Based on Chirally Flexible (Tropos) Ligands. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2012, 70, 1281-1294.	0.1	1
117	A Useful Guideline for Rapid Separation and Identification of Fluorous Compounds by β-Cyclodextrin Columns. QSAR and Combinatorial Science, 2006, 25, 766-768.	1.4	0
118	Recent Progress in the Metathesis Reaction. , 0, , 153-206.		0
119	Asymmetric Synthesis Based on Catalytic Activation of CH Bonds and CC Bonds. , 0, , 129-152.		0
120	Catalytic Asymmetric Synthesis of Fluoroalkylated Compounds Using Chiral Dicationic Palladium Complexes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2016, 74, 219-232.	0.1	0