Davide Tessaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3882776/publications.pdf

Version: 2024-02-01

430874 526287 44 826 18 27 citations h-index g-index papers 49 49 49 928 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	"A Study in Yellow― Investigations in the Stereoselectivity of Eneâ€Reductases. ChemBioChem, 2022, 23, .	2.6	21
2	Multi-step chemo-enzymatic synthesis of azelaic and pelargonic acids from the soapstock of high-oleic sunflower oil refinement. Green Chemistry, 2022, 24, 2082-2093.	9.0	6
3	Towards a Complete Exploitation of Brewers' Spent Grain from a Circular Economy Perspective. Fermentation, 2022, 8, 151.	3.0	12
4	An Efficient Protein Evolution Workflow for the Improvement of Bacterial PET Hydrolyzing Enzymes. International Journal of Molecular Sciences, 2022, 23, 264.	4.1	12
5	Enzymatic Methods for the Manipulation and Valorization of Soapstock from Vegetable Oil Refining Processes. Sustainable Chemistry, 2021, 2, 74-91.	4.7	17
6	Oxidation of threo â€9,10â€Dihydroxystearic Acid Mediated by Micrococcus luteus as a Key Step in the Conversion of Oleic Acid into Pelargonic and Azelaic Acids. ChemCatChem, 2021, 13, 3275-3282.	3.7	3
7	Exploitation of Soybean Oil Acid Degumming Waste: Biocatalytic Synthesis of High Value Phospholipids. ChemistrySelect, 2021, 6, 9157-9163.	1.5	2
8	Discovery and Characterization of a Novel Thermostable βâ€Amino Acid Transaminase from a <i>>Meiothermus</i> > Strain Isolated in an Icelandic Hot Spring. Biotechnology Journal, 2020, 15, e2000125.	3.5	6
9	Valorization of Corn Seed Oil Acid Degumming Waste for Phospholipids Preparation by Phospholipase D-Mediated Processes. Catalysts, 2020, 10, 809.	3.5	4
10	Application of Transaminases in a Disperse System for the Bioamination of Hydrophobic Substrates. Advanced Synthesis and Catalysis, 2020, 362, 1156-1166.	4.3	8
11	Conversion of Oleic Acid into Azelaic and Pelargonic Acid by a Chemo-Enzymatic Route. Molecules, 2020, 25, 1882.	3.8	21
12	Continuous-Flow Biocatalytic Process for the Synthesis of the Best Stereoisomers of the Commercial Fragrances Leather Cyclohexanol (4-Isopropylcyclohexanol) and Woody Acetate (4-(Tert-Butyl)Cyclohexyl Acetate). Catalysts, 2020, 10, 102.	3.5	11
13	Exploiting the vicinal disubstituent effect on the diastereoselective synthesis of \hat{l}^3 and \hat{l}^4 lactones. Organic and Biomolecular Chemistry, 2019, 17, 813-821.	2.8	3
14	Tandem Tetrahydroisoquinolineâ€4 arboxylic Acid/βâ€Alanine as a New Construct Able To Induce a Flexible Turn. Chemistry - A European Journal, 2017, 23, 10822-10831.	3.3	18
15	Deracemization and Stereoinversion of αâ€Amino Acids by <scp>l</scp> â€Amino Acid Deaminase. Advanced Synthesis and Catalysis, 2017, 359, 3773-3781.	4.3	27
16	Biocatalytic Synthesis of Phospholipids and Their Application as Coating Agents for CaCO ₃ Nano-crystals: Characterization and Intracellular Localization Analysis. ChemistrySelect, 2016, 1, 6507-6514.	1.5	15
17	A Continuousâ€Flow Cascade Reactor System for Subtilisin A―Catalyzed Dynamic Kinetic Resolution of ⟨i>N⟨/i>â€∢i>tert⟨i>â€Butyloxycarbonylphenylalanine Ethyl Thioester with Benzylamine. Advanced Synthesis and Catalysis, 2016, 358, 1608-1617.	4.3	32
18	Systems Biocatalysis: An Artificial Metabolism for Interconversion of Functional Groups. ACS Catalysis, 2015, 5, 1604-1608.	11.2	41

#	Article	IF	Citations
19	Characterization of a novel amine transaminase from Halomonas elongata. Journal of Molecular Catalysis B: Enzymatic, 2015, 120, 141-150.	1.8	74
20	Immobilization of <scp>I</scp> -aspartate oxidase from Sulfolobus tokodaii as a biocatalyst for resolution of aspartate solutions. Catalysis Science and Technology, 2015, 5, 1106-1114.	4.1	5
21	A thermostable L-aspartate oxidase: a new tool for biotechnological applications. Applied Microbiology and Biotechnology, 2013, 97, 7285-7295.	3.6	25
22	Synergy between catalysts: enzymes and bases. DKR of non-natural amino acids derivatives. Catalysis Science and Technology, 2012, 2, 1606.	4.1	32
23	Naphthyl-l-α-amino acids via chemo-enzymatic dynamic kinetic resolution. Tetrahedron: Asymmetry, 2012, 23, 938-944.	1.8	37
24	Improvements in the enzymatic synthesis of phosphatidylserine employing ionic liquids. Journal of Molecular Catalysis B: Enzymatic, 2012, 84, 132-135.	1.8	22
25	Multistep Enzyme Catalyzed Reactions for Unnatural Amino Acids. Methods in Molecular Biology, 2012, 794, 21-35.	0.9	1
26	Base catalyzed racemization of amino acid derivatives. Tetrahedron: Asymmetry, 2011, 22, 851-856.	1.8	16
27	<scp>L</scp> â€Amino Acid Amides <i>via</i> Dynamic Kinetic Resolution. Advanced Synthesis and Catalysis, 2011, 353, 2333-2338.	4.3	18
28	Dynamic kinetic resolution of N-Boc-aminoacid thioesters mediated by subtilisin. Journal of Biotechnology, 2010, 150, 123-123.	3.8	1
29	Evolution of Chymotrypsin-Like Enzymes for Specific Hydrolytic Bioconversions of Industrial Interest. Journal of Biotechnology, 2010, 150, 379-379.	3.8	0
30	Potential Application of <i>N</i> -Carbamoyl-β-Alanine Amidohydrolase from <i>Agrobacterium tumefaciens </i> C58 for β-Amino Acid Production. Applied and Environmental Microbiology, 2009, 75, 514-520.	3.1	21
31	Enzymatic synthesis of carnosine derivatives catalysed by Burkholderia cepacia lipase. Tetrahedron: Asymmetry, 2009, 20, 1641-1645.	1.8	13
32	New Aliphatic Glycerophosphoryl-Containing Polyurethanes: Synthesis, Platelet Adhesion and Elution Cytotoxicity Studies. International Journal of Artificial Organs, 2009, 32, 204-212.	1.4	3
33	Discrimination of Chain Positions in Mixed Short/Longâ€Chain Glycerophosphocholines by NMR Chemical Shift Variations. JAOCS, Journal of the American Oil Chemists' Society, 2008, 85, 1005-1011.	1.9	1
34	Chemo-enzymatic deracemization methods for the preparation of enantiopure non-natural α-amino acids. Coordination Chemistry Reviews, 2008, 252, 715-726.	18.8	84
35	Activity of yeast d-amino acid oxidase on aromatic unnatural amino acids. Journal of Molecular Catalysis B: Enzymatic, 2008, 50, 93-98.	1.8	10
36	Chemo-Enzymatic Dynamic Kinetic Resolution of Amino Acid Thioesters. Advanced Synthesis and Catalysis, 2007, 349, 1345-1348.	4.3	29

#	ARTICLE	IF	CITATION
37	A practical selective synthesis of mixed short/long chains glycerophosphocholines. Chemistry and Physics of Lipids, 2007, 147, 113-118.	3.2	29
38	Diol-tin ketal as effective catalyst in the tin mediated benzoylation of polyols. Journal of Molecular Catalysis A, 2006, 244, 41-45.	4.8	8
39	Enzymatic approach to both enantiomers of N-Boc hydrophobic amino acids. Tetrahedron: Asymmetry, 2006, 17, 1995-1999.	1.8	21
40	Enzymatic Conversion of Unnatural Amino Acids by YeastD-Amino Acid Oxidase. Advanced Synthesis and Catalysis, 2006, 348, 2183-2190.	4.3	59
41	Membrane assisted coupled enzyme system for phospholipid modification. Enzyme and Microbial Technology, 2005, 37, 435-440.	3.2	5
42	The biocatalyzed stereoselective preparation of polycyclic cyanohydrins. Tetrahedron: Asymmetry, 2004, 15, 21-27.	1.8	22
43	Synthesis and antiproliferative activity of alkylphosphocholines. Chemistry and Physics of Lipids, 2003, 126, 201-210.	3.2	17
44	Chemo-enzymatic approach to d-allo-isoleucine. Tetrahedron: Asymmetry, 2003, 14, 3189-3196.	1.8	10