
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3882680/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Supramolecular Catalysis in Metal–Ligand Cluster Hosts. Chemical Reviews, 2015, 115, 3012-3035.	47.7	1,021
2	Acid Catalysis in Basic Solution: A Supramolecular Host Promotes Orthoformate Hydrolysis. Science, 2007, 316, 85-88.	12.6	717
3	Stoichiometric and catalytic hydroamination of alkynes and allene by zirconium bisamides Cp2Zr(NHR)2. Journal of the American Chemical Society, 1992, 114, 1708-1719.	13.7	422
4	A supramolecular microenvironment strategy for transition metal catalysis. Science, 2015, 350, 1235-1238.	12.6	401
5	Generation, alkyne cycloaddition, arene carbon-hydrogen activation, nitrogen-hydrogen activation and dative ligand trapping reactions of the first monomeric imidozirconocene (Cp2Zr:NR) complexes. Journal of the American Chemical Society, 1988, 110, 8729-8731.	13.7	382
6	Enzymelike Catalysis of the Nazarov Cyclization by Supramolecular Encapsulation. Journal of the American Chemical Society, 2010, 132, 6938-6940.	13.7	308
7	Self-Assembled Tetrahedral Hosts as Supramolecular Catalysts. Accounts of Chemical Research, 2018, 51, 2447-2455.	15.6	292
8	Supramolecular Catalysis of a Unimolecular Transformation: Aza-Cope Rearrangement within a Self-Assembled Host. Angewandte Chemie - International Edition, 2004, 43, 6748-6751.	13.8	273
9	The Mechanism of a C-H Bond Activation Reaction in Room-Temperature Alkane Solution. Science, 1997, 278, 260-263.	12.6	256
10	Molecular Recognition and Stabilization of Iminium Ions in Water. Journal of the American Chemical Society, 2006, 128, 14464-14465.	13.7	216
11	Advances in supramolecular host-mediated reactivity. Nature Catalysis, 2020, 3, 969-984.	34.4	216
12	Enantioselective Catalysis of the Aza-Cope Rearrangement by a Chiral Supramolecular Assembly. Journal of the American Chemical Society, 2009, 131, 17530-17531.	13.7	215
13	Variable regiochemistry in the stoichiometric and catalytic hydroamination of alkynes by imidozirconium complexes caused by an unusual dependence of the rate law on alkyne structure and temperature. Journal of the American Chemical Society, 1993, 115, 2753-2763.	13.7	206
14	Selective transformations of organic compounds by imidozirconocene complexes. Chemical Record, 2002, 2, 431-445.	5.8	176
15	Supramolecular Catalysis of Unimolecular Rearrangements:Â Substrate Scope and Mechanistic Insights. Journal of the American Chemical Society, 2006, 128, 10240-10252.	13.7	170
16	Reactivity of a Terminal Ti(IV) Imido Complex toward Alkenes and Alkynes:  Cycloaddition vs Câ^'H Activation. Journal of the American Chemical Society, 1998, 120, 13405-13414.	13.7	164
17	Analysis of an Unprecedented Mechanism for the Catalytic Hydrosilylation of Carbonyl Compounds. Journal of the American Chemical Society, 2007, 129, 14684-14696.	13.7	142
18	A Mechanistic Study of the Cycloaddition-Cycloreversion Reactions of Zirconium-Imido Complex Cp2Zr(N-t-Bu)(THF) with Organic Imines and Organic Azides. Journal of the American Chemical Society, 1995, 117, 974-985.	13.7	137

#	Article	IF	CITATIONS
19	Zirconium-Mediated Metathesis of Imines:  A Study of the Scope, Longevity, and Mechanism of a Complicated Catalytic System. Journal of the American Chemical Society, 2000, 122, 751-761.	13.7	121
20	Synthesis and Properties of Seven Ionic Liquids Containing 1-Methyl-3-octylimidazolium or 1-Butyl-4-methylpyridinium Cations. Journal of Chemical & Engineering Data, 2006, 51, 1389-1393.	1.9	119
21	Dihydrogen Activation by Titanium Sulfide Complexes. Organometallics, 1999, 18, 5502-5510.	2.3	115
22	Catalytic Hydroamination of Alkynes and Norbornene with Neutral and Cationic Tantalum Imido Complexes. Organic Letters, 2004, 6, 2519-2522.	4.6	114
23	Generation of the highly reactive intermediates Cp*2Zr:O and Cp*2Zr:S: trapping reactions with alkynes, nitriles, and dative ligands. Organometallics, 1992, 11, 761-777.	2.3	112
24	Lewis Acidity of Bis(perfluorocatecholato)silane: Aldehyde Hydrosilylation Catalyzed by a Neutral Silicon Compound. Journal of the American Chemical Society, 2015, 137, 5328-5331.	13.7	112
25	Enabling New Modes of Reactivity via Constrictive Binding in a Supramolecular-Assembly-Catalyzed Aza-Prins Cyclization. Journal of the American Chemical Society, 2015, 137, 9202-9205.	13.7	111
26	Synthesis, Structure, and Reactivity of Monomeric Titanocene Sulfido and Disulfide Complexes. Reaction of H2with a Terminal MS Bond. Journal of the American Chemical Society, 1997, 119, 4543-4544.	13.7	108
27	Synthesis, structure, and reactivity of a monomeric pentamethylcyclopentadienyliridium(III) imido complex. Journal of the American Chemical Society, 1989, 111, 2719-2721.	13.7	107
28	Preagostic Rhâ^'H Interactions and Câ^'H Bond Functionalization:  A Combined Experimental and Theoretical Investigation of Rhodium(I) Phosphinite Complexes. Organometallics, 2005, 24, 5737-5746.	2.3	107
29	Application of theE-CApproach to Understanding the Bond Energies Thermodynamics of Late-Metal Amido, Aryloxo and Alkoxo Complexes: An Alternative to pï€/dï€ Repulsion. Comments on Inorganic Chemistry, 1999, 21, 115-129.	5.2	103
30	Zirconium-Mediated Imine Metathesis. Synthesis of 2,4-Diaza-1-zirconiacyclobutanes and the Mechanism of Their Reactions with Imines and Alkynes. Journal of the American Chemical Society, 1994, 116, 2669-2670.	13.7	100
31	Adduct Formation and Single and Double Deprotonation of Cp*(PMe3)Ir(H)2with Main Group Metal Alkyls and Aryls:Â Synthesis and Structure of Three Novel Irâ^'Al and Irâ^'Mg Heterobimetallics. Journal of the American Chemical Society, 1998, 120, 223-224.	13.7	98
32	Nitrous Oxide Mediated Synthesis of Monomeric Hydroxoruthenium Complexes. Reactivity of (DMPE)2Ru(H)(OH) and the Synthesis of a Silica-Bound Ruthenium Complex. Organometallics, 1998, 17, 5072-5085.	2.3	96
33	Supramolecular Catalysis of Orthoformate Hydrolysis in Basic Solution: An Enzyme-Like Mechanism. Journal of the American Chemical Society, 2008, 130, 11423-11429.	13.7	93
34	Conformational Selection as the Mechanism of Guest Binding in a Flexible Supramolecular Host. Journal of the American Chemical Society, 2017, 139, 8013-8021.	13.7	93
35	Synthesis, Structures, and Kinetics and Mechanism of Decomposition of Terminal Metal Azide Complexes: Isolated Intermediates in the Formation of Imidometal Complexes from Organic Azides. Organometallics, 1996, 15, 684-692.	2.3	92
36	Supramolecular Ga ₄ L ₆ ^{12–} Cage Photosensitizes 1,3-Rearrangement of Encapsulated Guest via Photoinduced Electron Transfer. Journal of the American Chemical Society, 2015, 137, 10128-10131.	13.7	92

#	Article	IF	CITATIONS
37	Structural Factors that Influence the Course of Overall [2 + 2] Cycloaddition Reactions between Imidozirconocene Complexes and Heterocumulenes. Organometallics, 2000, 19, 4795-4809.	2.3	91
38	Scope and Mechanism of Cooperativity at the Intersection of Organometallic and Supramolecular Catalysis. Journal of the American Chemical Society, 2016, 138, 9682-9693.	13.7	86
39	Synthesis of trimethylphosphine-substituted (pentamethylcyclopentadienyl)iridium hydride complexes; protonation and deprotonation of (pentamethylcyclopentadienyl)(trimethylphosphine)iridium dihydride. Journal of the American Chemical Society, 1985, 107, 3502-3507.	13.7	82
40	Z-Selective, Catalytic Internal Alkyne Semihydrogenation under H ₂ /CO Mixtures by a Niobium(III) Imido Complex. Journal of the American Chemical Society, 2011, 133, 14904-14907.	13.7	82
41	Deconvoluting the Role of Charge in a Supramolecular Catalyst. Journal of the American Chemical Society, 2018, 140, 6591-6595.	13.7	81
42	Catalytic Dimerization Reactions of α-Olefins and α,ï‰-Dienes with Cp2ZrCl2/Poly(methylalumoxane):Â Formation of Dimers, Carbocycles, and Oligomers. Journal of the American Chemical Society, 1996, 118, 4715-4716.	13.7	80
43	Room temperature generation of reactive intermediates Cp*Zr:O and Cp*2Zr:S: trapping reactions with unsaturated organic molecules and dative ligands. Journal of the American Chemical Society, 1990, 112, 6426-6428.	13.7	76
44	A reactive organometallic oxo intermediate, Cp*2Zr:O: generation and subsequent trapping reactions forming alkyne and nitrile addition products. Journal of the American Chemical Society, 1989, 111, 8751-8753.	13.7	73
45	Reactivity of a Parent Amidoruthenium Complex:Â A Transition Metal Amide of Exceptionally High Basicity. Journal of the American Chemical Society, 2000, 122, 8799-8800.	13.7	73
46	Computational Study of Methane Activation by TpRe(CO)2 and CpRe(CO)2 with a Stereoelectronic Comparison of Cyclopentadienyl and Scorpionate Ligands. Organometallics, 2003, 22, 2331-2337.	2.3	71
47	Halo, Alkyl, Aryl, and Bis(imido) Complexes of Niobium Supported by the β-Diketiminato Ligand. Organometallics, 2010, 29, 2926-2942.	2.3	71
48	The effect of host structure on the selectivity and mechanism of supramolecular catalysis of Prins cyclizations. Chemical Science, 2015, 6, 1383-1393.	7.4	68
49	CⰒC and CⰒH Bond Activation at Ruthenium(II):  The Stepwise Degradation of a Neopentyl Ligand to a Trimethylenemethane Ligand. Journal of the American Chemical Society, 1997, 119, 11244-11254.	13.7	67
50	Deprotonation of the Transition Metal Hydride (η5-C5Me5)(PMe3)IrH2. Synthesis and Chemistry of the Strongly Basic Lithium Iridate (η5-C5Me5)(PMe3)Ir(H)(Li). Organometallics, 1999, 18, 2005-2020.	2.3	66
51	A Supramolecular Strategy for Selective Catalytic Hydrogenation Independent of Remote Chain Length. Journal of the American Chemical Society, 2019, 141, 11806-11810.	13.7	66
52	Cycloaddition and Cycloreversion Reactions of a Monomeric Ti(IV) Oxo Complex with Terminal and Internal Alkynes. A Reversible Oxametallacyclobutene/Hydroxoacetylide Interconversion. Journal of the American Chemical Society, 1995, 117, 5393-5394.	13.7	65
53	X-ray Crystal Structures of Cp*Ni(PEt3)X [X = Br, O(p-C6H4Me), NH(p-C6H4Me), S(p-C6H4Me), OCH3, CH2C6H5, Me, H, PEt3+]. Understanding Distortions and Trans Influences in Cyclopentadienyl Complexes. Journal of the American Chemical Society, 1997, 119, 12815-12823.	13.7	65
54	A Useful Method for Preparing Iridium Alkoxides and a Study of Their Catalytic Decomposition by Iridium Cations: A New Mode of β-Hydride Elimination for Coordinatively Saturated Metal Alkoxides. Journal of the American Chemical Society, 1998, 120, 6826-6827.	13.7	65

#	Article	IF	CITATIONS
55	Carboamination: Additions of Imine CN Bonds Across Alkynes Catalyzed by Imidozirconium Complexes. Angewandte Chemie - International Edition, 2004, 43, 5372-5374.	13.8	64
56	Highly Efficient Aluminum-Catalyzed Hydro-amination/-hydrazination of Carbodiimides. Organometallics, 2010, 29, 5946-5952.	2.3	64
57	Kinetics and mechanism of the formation of nitrosoalkane complexes by migratory insertion of coordinated nitric oxide into cobalt-carbon bonds. Journal of the American Chemical Society, 1983, 105, 3922-3929.	13.7	63
58	Synthesis of an η2-N2-Titanium Diazoalkane Complex with Both Imido- and Metal Carbene-Like Reactivity Patterns. Journal of the American Chemical Society, 1998, 120, 6316-6328.	13.7	62
59	Controlled Hydrosilylation of Carbonyls and Imines Catalyzed by a Cationic Aluminum Alkyl Complex. Organometallics, 2012, 31, 2530-2533.	2.3	62
60	Carbon–fluorine bond cleavage in fluoroarenes via a niobium(iii) imido complex: from stoichiometric to catalytic hydrodefluorination. Chemical Science, 2014, 5, 2517.	7.4	60
61	Generation of Oxozirconocene Complexes from the Reaction of Cp2(THF)ZrN-t-Bu with Organic and Metal Carbonyl Functionalities:  Apparently Divergent Behavior of Transient [Cp2ZrO]. Journal of the American Chemical Society, 1996, 118, 6396-6406.	13.7	58
62	Sub-Picosecond IR Study of the Reactive Intermediate in an Alkane Câ^'H Bond Activation Reaction by CpRh(CO)2. Organometallics, 1998, 17, 3417-3419.	2.3	57
63	Synthesis, Characterization, and Reactions of Isolable (β-Diketiminato)niobium(III) Imido Complexes. Organometallics, 2010, 29, 5010-5025.	2.3	56
64	Diniobium Inverted Sandwich Complexes with μ-η ⁶ :η ⁶ -Arene Ligands: Synthesis, Kinetics of Formation, and Electronic Structure. Journal of the American Chemical Society, 2013, 135, 3224-3236.	13.7	56
65	Synthesis, Characterization, Isomerization, and Reactivity of Dimeric Cyclopentadienylnickel Amido Complexes. Journal of the American Chemical Society, 1996, 118, 1092-1104.	13.7	53
66	Nitrous Oxide Mediated Oxygen Atom Insertion into a Rutheniumâ^'Hydride Bond. Synthesis and Reactivity of the Monomeric Hydroxoruthenium Complex (DMPE)2Ru(H)(OH). Organometallics, 1997, 16, 1106-1108.	2.3	53
67	Preparation and reactivity of terminal gold(<scp>i</scp>) amides and phosphides. Chemical Science, 2013, 4, 1023-1027.	7.4	53
68	Synthesis, X-ray Structure Determination, and Reactions of (Pentamethylcyclopentadienyl)(nitrosyl)ruthenium η2-Arene Complexes. Journal of the American Chemical Society, 1996, 118, 6908-6915.	13.7	52
69	Ultrafast Dynamics of Cp*M(CO)2(M = Ir, Rh) in Solution:Â The Origin of the Low Quantum Yields for Câ^'H Bond Activation. Journal of the American Chemical Society, 1996, 118, 2069-2072.	13.7	51
70	Synthesis, Characterization, and Reactivity of Aluminum Alkyl/Amide Complexes Supported by Guanidinate and Monoanionic OCO-Pincer Ligands. Organometallics, 2010, 29, 3350-3356.	2.3	51
71	Synthesis, Structure, and Reactivity Studies of an η2-N2-Titanium Diazoalkane Complex. Generation and Trapping of a Carbene Complex Intermediate. Journal of the American Chemical Society, 1996, 118, 8737-8738.	13.7	50
72	Neutral and Cationic Alkyl Tantalum Imido Complexes:Â Synthesis and Migratory Insertion Reactions. Organometallics, 2006, 25, 3394-3406.	2.3	50

ROBERT G BERGMAN

#	Article	IF	CITATIONS
73	Nitrene Metathesis and Catalytic Nitrene Transfer Promoted by Niobium Bis(imido) Complexes. Journal of the American Chemical Society, 2016, 138, 52-55.	13.7	48
74	Reaction of (Bisimido)niobium(V) Complexes with Organic Azides: [3 + 2] Cycloaddition and Reversible Cleavage of I²-Diketiminato Ligands Involving Nitrene Transfer. Journal of the American Chemical Society, 2014, 136, 2994-2997.	13.7	47
75	Synthesis of dialkyl- and alkyl(acyl)rhenium complexes by alkylation of anionic rhenium complexes at the metal center. Mechanism of a double carbonylation reaction that proceeds via the formation of free methyl radicals in solution. Journal of the American Chemical Society, 1989, 111, 1285-1299.	13.7	46
76	The Mechanism of Addition of an Irâ^'OH bond to Ethylene. Catalytic Tandem Activation by Two [η5-Cp*(Ph)IrPMe3]+ Complex Fragments. Journal of the American Chemical Society, 1997, 119, 2580-2581.	13.7	46
77	Insertion of Nitriles into a Zirconiumâ`'Iridium Heterobimetallic Complex:Â A Mechanistic Study. Organometallics, 2000, 19, 602-614.	2.3	46
78	Highly Efficient Aluminum-Catalyzed Ring-Opening Polymerization of Cyclic Carbonates, Lactones, and Lactides, Including a Unique Crystallographic Snapshot of an Intermediate. Organometallics, 2011, 30, 3217-3224.	2.3	45
79	Reproducibility in Chemical Research. Angewandte Chemie - International Edition, 2016, 55, 12548-12549.	13.8	45
80	Photoinduced N2 loss as a route to long-lived organometallic alkane complexes: A time-resolved IR and NMR study. Chemical Science, 2010, 1, 622.	7.4	44
81	Ten-Membered Ring Enediynes with Remarkable Chemical and Biological Profiles. Angewandte Chemie International Edition in English, 1992, 31, 1044-1046.	4.4	43
82	Group 5 chemistry supported by \hat{l}^2 -diketiminate ligands. Dalton Transactions, 2016, 45, 15725-15745.	3.3	43
83	Thorium Metallacycle Facilitates Catalytic Alkyne Hydrophosphination. Journal of the American Chemical Society, 2017, 139, 12935-12938.	13.7	43
84	Supramolecular Host-Selective Activation of Iodoarenes by Encapsulated Organometallics. Journal of the American Chemical Society, 2019, 141, 1701-1706.	13.7	43
85	Synthesis and Structural Characterization of Late Transition Metal Parent Amido (LnM-NH2) Complexes: An Acid/Conjugate Base Metathesis Approach. Journal of the American Chemical Society, 1998, 120, 6828-6829.	13.7	42
86	Facile Rh(III)-Catalyzed Synthesis of Fluorinated Pyridines. Organic Letters, 2015, 17, 2567-2569.	4.6	42
87	Use of Steric Hindrance and a Metallacyclobutene Resting State to Develop Robust and Kinetically Characterizable Zirconium-Based Imine Metathesis Catalysts. Journal of the American Chemical Society, 1998, 120, 11828-11829.	13.7	40
88	Reactions of Cp*(PMe3)Ir(Me)OTf with Silanes:Â Role of Base-Free Silylene Complexes in Rearrangements of the Resulting Silicon-Based Ligands. Organometallics, 2002, 21, 3376-3387.	2.3	40
89	A Nanovessel-Catalyzed Three-Component Aza-Darzens Reaction. Journal of the American Chemical Society, 2020, 142, 733-737.	13.7	39
90	Tantalum-Mediated Cleavage of an NN Bond in an Organic Diazene (Azoarene) to Produce an Imidometal (MNR) Complex:  An η2-Diazene Complex Is Not an Intermediate. Organometallics, 1999, 18, 811-813.	2.3	37

#	Article	IF	CITATIONS
91	Dis-assembly of a Benzylic CF3 Group Mediated by a Niobium(III) Imido Complex. Journal of the American Chemical Society, 2013, 135, 8145-8148.	13.7	37
92	Impact of Host Flexibility on Selectivity in a Supramolecular Host-Catalyzed Enantioselective aza-Darzens Reaction. Journal of the American Chemical Society, 2022, 144, 11425-11433.	13.7	35
93	Double Group Transfer Reactions of an Unsaturated Tantalum Methylidene Complex with PyridineN-Oxides. Organometallics, 1999, 18, 4465-4467.	2.3	34
94	An Unusally Diverse Array of Products Formed upon Carbonylation of a Dialkylniobium Complex. Journal of the American Chemical Society, 2008, 130, 11262-11263.	13.7	34
95	Biaryl Reductive Elimination Is Dramatically Accelerated by Remote Lewis Acid Binding to a 2,2′-Bipyrimidyl–Platinum Complex: Evidence for a Bidentate Ligand Dissociation Mechanism. Organometallics, 2016, 35, 1064-1069.	2.3	34
96	Synthesis of Alkyltantalocene Oxide, Sulfide, and Imide Derivatives:Â Stereospecific Heteroatom and -group Transfers from Oxiranes, Thiiranes, and Aziridines to Methyltantalocene. Organometallics, 1996, 15, 133-141.	2.3	31
97	Cycloaddition and Nucleophilic Substitution Reactions of the Monomeric Titanocene Sulfido Complex (η5-C5Me5)2(C5H5N)TiS. Journal of the American Chemical Society, 1998, 120, 7825-7834.	13.7	31
98	Mechanism and Catalytic Impact of Ir–Ta Heterobimetallic and Ir–P Transition Metal/Main Group Interactions on Alkene Hydrogenation. ACS Catalysis, 2015, 5, 1840-1849.	11.2	30
99	Preparation of Enantiomerically Pure Perfluorobutanesulfinamide and Its Application to the Asymmetric Synthesis of α-Amino Acids. Journal of Organic Chemistry, 2016, 81, 1547-1557.	3.2	30
100	NMR spectra of (C5(CH3)5)IrH2SiMe3Li(pmdeta) and (C5(CH3)5)IrH3Li(pmdeta): the first direct observation of resolved lithium-7-proton coupling. Journal of the American Chemical Society, 1985, 107, 6391-6393.	13.7	29
101	Synthesis and reactivity of cationic niobium and tantalum methyl complexes supported by imido and β-diketiminato ligands. Dalton Transactions, 2011, 40, 7718.	3.3	29
102	Lewis acid–base interactions between platinum(<scp>ii</scp>) diaryl complexes and bis(perfluorophenyl)zinc: strongly accelerated reductive elimination induced by a Z-type ligand. Chemical Communications, 2016, 52, 7039-7042.	4.1	28
103	Heterotetrametallic Re–Zn–Zn–Re Complex Generated by an Anionic Rhenium(I) β-Diketiminate. Journal of the American Chemical Society, 2019, 141, 800-804.	13.7	28
104	Chemoselective and Site-Selective Reductions Catalyzed by a Supramolecular Host and a Pyridine–Borane Cofactor. Journal of the American Chemical Society, 2021, 143, 2108-2114.	13.7	28
105	Synthesis of Stable Gold(III) Pincer Complexes with Anionic Heteroatom Donors. Organometallics, 2014, 33, 4169-4172.	2.3	27
106	Heterogeneous Supramolecular Catalysis through Immobilization of Anionic M ₄ L ₆ Assemblies on Cationic Polymers. Journal of the American Chemical Society, 2020, 142, 19327-19338.	13.7	27
107	Synthesis, structure and reactivity of (.eta.5-cyclopentadienyl)nitrosylcobalt. Journal of the American Chemical Society, 1984, 106, 7462-7468.	13.7	26
108	New Regio- and Stereoselective Cascades via Unstabilized Azomethine Ylide Cycloadditions for the Synthesis of Highly Substituted Tropane and Indolizidine Frameworks. Journal of the American Chemical Society, 2016, 138, 12664-12670.	13.7	26

#	Article	IF	CITATIONS
109	Activation of Carbon—Hydrogen Bonds in Alkanes and Other Organic Molecules Using Organotransition Metal Complexes. Advances in Chemistry Series, 1992, , 211-220.	0.6	25
110	Activation of Organic Disulfides by a Paramagnetic Heterobimetallic Tantalum/Cobalt Complex and a Comparison of Their Reactions with Cobaltocene. Evidence for a Dependence of Mechanism on the Electronic Properties of the Disulfide. Journal of the American Chemical Society, 1996, 118, 1793-1794.	13.7	25
111	Synthesis of Novel Group 4 Complexes Bearing the Tropidinyl Ligand:Â Investigations of Dynamic Behavior, Reactivity, and Catalytic Olefin Polymerization. Organometallics, 2000, 19, 1406-1421.	2.3	25
112	Reactions of Imines with Azazirconacyclobutenes and Generation of Electron-Deficient Imidozirconocene Complexes. Organometallics, 2004, 23, 2231-2233.	2.3	25
113	Regio- and Diastereoselective Synthesis of Highly Substituted, Oxygenated Piperidines from Tetrahydropyridines. Journal of Organic Chemistry, 2015, 80, 6660-6668.	3.2	25
114	Oxygen Atom Transfer and Intramolecular Nitrene Transfer in a Rhenium β-Diketiminate Complex. Inorganic Chemistry, 2016, 55, 11993-12000.	4.0	25
115	Cyclopentadienyl and Imide Ligand Transfer from Zirconium to Iridium:Â Can Early Transition Metal Imido Compounds Be Used as Imide Transfer Reagents?. Organometallics, 1998, 17, 433-437.	2.3	24
116	Rapid Reduction of Nitric Oxide to Dinitrogen by Zirconium(II):Â Kinetic Studies on a Reaction Controlled by Gasâ^'Liquid Transport. Journal of the American Chemical Society, 1999, 121, 8260-8269.	13.7	24
117	Photo-activation of d ⁰ niobium imido azides: en route to nitrido complexes. Chemical Communications, 2016, 52, 5538-5541.	4.1	24
118	Binding of Chlorohydrocarbons to Metal Centers:Â Quantitative Evaluation of Relative Binding Constants and Structural Characterization of the First Isolable Transition Metalâ^Chloromethane Adduct. Journal of the American Chemical Society, 2001, 123, 11508-11509.	13.7	22
119	Platinum Group Thiophenoxyimine Complexes:Â Syntheses and Crystallographic/Computational Studies. Organometallics, 2007, 26, 897-909.	2.3	22
120	Electron localization in a mixed-valence diniobium benzene complex. Chemical Science, 2015, 6, 993-1003.	7.4	22
121	Controlling dinitrogen functionalization at rhenium through alkali metal ion pairing. Dalton Transactions, 2019, 48, 17936-17944.	3.3	22
122	Synthesis of organometallic heterodinuclear .muoxo complexes by extrusion of alkenes from zirconium/tungsten oxaalkyl complexes. Journal of the American Chemical Society, 1986, 108, 8092-8094.	13.7	21
123	Reaction of a Tantalum Alkylidene Complex with Dinuclear Metal Carbonyls: Formation of C ₃ ligands. Science, 1993, 259, 661-663.	12.6	19
124	Mechanistic Investigation of the Reaction of Iridium Dihydride Complexes with Organic Acid Chlorides. Organometallics, 2000, 19, 2073-2083.	2.3	19
125	C—H Bond Activation by Iridium and Rhodium Complexes: Catalytic Hydrogen—Deuterium Exchange and C—C Bond-Forming Reactions. ACS Symposium Series, 2004, , 46-55.	0.5	19
126	The neighboring group effect of fluorine in the tritium labeling of organic substrates with [Cp*(PMe3)IrMe(CH2Cl2)]+[BArf]â^', a cationic iridium(III) complex. Journal of Labelled Compounds and Radiopharmaceuticals, 2006, 49, 623-634.	1.0	19

#	Article	IF	CITATIONS
127	Enantioselective Kinetic Resolution/Desymmetrization of <i>Para</i> â€Quinols: A Case Study in Boronicâ€Acidâ€Directed Phosphoric Acid Catalysis. Advanced Synthesis and Catalysis, 2020, 362, 295-301.	4.3	18
128	H ₂ Activation and Direct Access to Terminal Nitride and <i>cyclo</i> -P ₃ Complexes by an Acceptor-Free Rhenium(II) β-Diketiminate. Inorganic Chemistry, 2019, 58, 13492-13501.	4.0	17
129	1,2-Addition and cycloaddition reactions of niobium bis(imido) and oxo imido complexes. Chemical Science, 2020, 11, 11613-11632.	7.4	17
130	Stereoselektive Synthese chiraler Zirconocene aus disubstituierten, donorfunktionalisierten Cyclopentadienâ€Derivaten Ã1⁄4ber helicale Chelatkomplexe. Angewandte Chemie, 1995, 107, 2423-2425.	2.0	16
131	Protein-like proton exchange in a synthetic host cavity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15303-15307.	7.1	16
132	Olefin‣upported Rhenium(III) Terminal Oxo Complexes Generated by Nucleophilic Addition to a Cyclopentadienyl Ligand. Angewandte Chemie - International Edition, 2017, 56, 14241-14245.	13.8	16
133	Hydroboration Reactivity of Niobium Bis(N-heterocyclic carbene)borate Complexes. Inorganic Chemistry, 2018, 57, 5213-5224.	4.0	16
134	Source of Rate Acceleration for Carbocation Cyclization in Biomimetic Supramolecular Cages. Journal of the American Chemical Society, 2022, 144, 11413-11424.	13.7	15
135	Zehngliedrige cyclische Endiine mit bemerkenswerten chemischen und biologischen Eigenschaften. Angewandte Chemie, 1992, 104, 1094-1096.	2.0	14
136	C–F sp2 bond functionalization mediated by niobium complexes. Dalton Transactions, 2015, 44, 19494-19500.	3.3	13
137	Structural diversity in multinuclear tantalum polyhydrides formed via reductive hydrogenolysis of metal–carbon bonds. Chemical Communications, 2019, 55, 13263-13266.	4.1	13
138	Reaction of Organic Disulfides with Cobalt-Centered Metal Radicals. Use of the E- and C-Based Dual-Parameter Substituent Model and Quantitative Solvent Effect Analyses To Compare Outer-Sphere and Inner-Sphere Electron-Transfer Processes. Journal of the American Chemical Society, 1998, 120, 8755-8766.	13.7	12
139	Reproduzierbarkeit in der chemischen Forschung. Angewandte Chemie, 2016, 128, 12736-12737.	2.0	11
140	Unusual lº1 coordination of a l²-diketiminate ligand in niobium complexes. Dalton Transactions, 2016, 45, 12661-12668.	3.3	11
141	Reductions of a Rhenium(III) Terminal Oxo Complex by Isocyanides and Carbon Monoxide. Organometallics, 2018, 37, 3552-3557.	2.3	10
142	Diverse Reactivity of a Rhenium(V) Oxo Imido Complex: [2 + 2] Cycloadditions, Chalcogen Metathesis, Oxygen Atom Transfer, and Protic and Hydridic 1,2-Additions. Inorganic Chemistry, 2020, 59, 11096-11107.	4.0	10
143	Electronic Structures of Rhenium(II) β-Diketiminates Probed by EPR Spectroscopy: Direct Comparison of an Acceptor-Free Complex to Its Dinitrogen, Isocyanide, and Carbon Monoxide Adducts. Journal of the American Chemical Society, 2020, 142, 13805-13813.	13.7	10
144	Electron acceptors promote proton–hydride tautomerism in low valent rhenium β-diketiminates. Chemical Communications, 2020, 56, 3761-3764.	4.1	10

#	Article	IF	CITATIONS
145	Redox-Initiated Reactivity of Dinuclear β-Diketiminatoniobium Imido Complexes. Inorganic Chemistry, 2017, 56, 1626-1637.	4.0	9
146	σ or π? Bonding interactions in a series of rhenium metallotetrylenes. Dalton Transactions, 2021, 50, 2083-2092.	3.3	9
147	Applications of Low-Valent Transition Metalates: Development of a Reactive Noncarbonyl Rhenium(I) Anion. Accounts of Chemical Research, 2022, 55, 783-793.	15.6	9
148	(N,N -chelate)(Olefin) Platinum (O) Complexes. Inorganic Syntheses, 2007, , 158-162.	0.3	7
149	Selective Stoichiometric and Catalytic Reactivity in the Confines of a Chiral Supramolecular Assembly. , 0, , 165-197.		7
150	Synthesis and Redox Chemistry of a Tantalum Alkylidene Complex Bearing a Metallaimidazole Ring. Organometallics, 2017, 36, 3520-3529.	2.3	7
151	A Diverse Array of C–C Bonds Formed at a Tantalum Metal Center. Inorganic Chemistry, 2021, 60, 9912-9931.	4.0	7
152	Rhodium(I)-Catalyzed Cycloisomerization of 1,6-Enynes. Synlett, 2015, 26, 1533-1536.	1.8	5
153	Facile Activation of Triarylboranes by Rhenium(V) Oxo Imido Complexes. Inorganic Chemistry, 2020, 59, 7216-7226.	4.0	5
154	Binuclear Metallacycles: Organometallic Ring Systems Containing Two Metal Centers. Israel Journal of Chemistry, 1982, 22, 27-29.	2.3	4
155	[3 + 2] Cycloadditions and Retrocycloadditions of Niobium Imido Complexes: An Experimental and Computational Mechanistic Study. Inorganic Chemistry, 2022, 61, 6574-6583.	4.0	4
156	Engendering reactivity at group 5-heteroatom multiple bonds <i>via</i> Ï€-loading. Chemical Science, 2022, 13, 8224-8242.	7.4	4
157	Addendum to Structure and Reactivity of Earlyâ^'Late Heterobimetallic Complexes. Chemical Reviews, 2001, 101, 207-208.	47.7	3
158	Tetrahydrido (Î \cdot 5 -Pentamethylcyclopenta-Dienyl)Iridium. Inorganic Syntheses, 2007, , 19-22.	0.3	3
159	Spectroscopic, Magnetic, and Computational Investigations on a Series of Rhenium(III) Cyclopentadienide l²-diketiminate Halide and Pseudohalide Complexes. Organometallics, 0, , .	2.3	3
160	Improved scope and diastereoselectivity of C–H activation in an expanded supramolecular host. Supramolecular Chemistry, 2016, 28, 188-191.	1.2	1
161	Olefinâ€Supported Rhenium(III) Terminal Oxo Complexes Generated by Nucleophilic Addition to a Cyclopentadienyl Ligand. Angewandte Chemie, 2017, 129, 14429-14433.	2.0	1