Nan Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3882482/publications.pdf

Version: 2024-02-01

126858 175177 4,715 53 33 52 citations h-index g-index papers 7105 54 54 54 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy and Environmental Science, 2012, 5, 8869.	15.6	790
2	Textile electrodes woven by carbon nanotube–graphene hybrid fibers for flexible electrochemical capacitors. Nanoscale, 2013, 5, 3428.	2.8	307
3	One-step preparation of iodine-doped graphitic carbon nitride nanosheets as efficient photocatalysts for visible light water splitting. Journal of Materials Chemistry A, 2015, 3, 4612-4619.	5.2	232
4	Tailored graphene systems for unconventional applications in energy conversion and storage devices. Energy and Environmental Science, 2015, 8, 31-54.	15.6	232
5	All-in-one graphene fiber supercapacitor. Nanoscale, 2014, 6, 6448.	2.8	204
6	Spinning fabrication of graphene/polypyrrole composite fibers for all-solid-state, flexible fibriform supercapacitors. Journal of Materials Chemistry A, 2014, 2, 12355.	5.2	199
7	Highly nitrogen-doped carbon capsules: scalable preparation and high-performance applications in fuel cells and lithium ion batteries. Nanoscale, 2013, 5, 2726.	2.8	177
8	Three-dimensional graphitic carbon nitride functionalized graphene-based high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 6761-6766.	5.2	173
9	Graphene/graphitic carbon nitride hybrids for catalysis. Materials Horizons, 2017, 4, 832-850.	6.4	168
10	Thermal Efficiency of Solar Steam Generation Approaching 100 % through Capillary Water Transport. Angewandte Chemie - International Edition, 2019, 58, 19041-19046.	7.2	167
11	Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting. Nano Research, 2015, 8, 1718-1728.	5.8	154
12	A Largeâ€Area, Flexible, and Flameâ€Retardant Graphene Paper. Advanced Functional Materials, 2016, 26, 1470-1476.	7.8	144
13	Thermal Efficiency of Solar Steam Generation Approaching 100 % through Capillary Water Transport. Angewandte Chemie, 2019, 131, 19217-19222.	1.6	122
14	Hierarchical hole-enhanced 3D graphene assembly for highly efficient capacitive deionization. Carbon, 2018, 129, 95-103.	5.4	112
15	Large-Scale Production of Flexible, High-Voltage Hydroelectric Films Based on Solid Oxides. ACS Applied Materials & Diterfaces, 2019, 11, 30927-30935.	4.0	98
16	Graphene quantum dots for energy storage and conversion: from fabrication to applications. Materials Chemistry Frontiers, 2020, 4, 421-436.	3.2	96
17	Gradient doped polymer nanowire for moistelectric nanogenerator. Nano Energy, 2018, 46, 297-304.	8.2	91
18	Intelligent multiple-liquid evaporation power generation platform using distinctive Jaboticaba-like carbon nanosphere@TiO ₂ nanowires. Journal of Materials Chemistry A, 2019, 7, 6766-6772.	5.2	87

#	Article	IF	Citations
19	Porous carbon nanowire array for surface-enhanced Raman spectroscopy. Nature Communications, 2020, 11, 4772.	5.8	86
20	A General and Extremely Simple Remote Approach toward Graphene Bulks with In Situ Multifunctionalization. Advanced Materials, 2016, 28, 3305-3312.	11.1	79
21	A powerful approach to functional graphene hybrids for high performance energy-related applications. Energy and Environmental Science, 2014, 7, 3699-3708.	15.6	74
22	Twoâ€dimensional materials of groupâ€IVA boosting the development of energy storage and conversion. , 2020, 2, 54-71.		73
23	Heteroatom substituted and decorated graphene: preparation and applications. Physical Chemistry Chemical Physics, 2015, 17, 32077-32098.	1.3	64
24	Direct spinning of fiber supercapacitor. Nanoscale, 2016, 8, 12113-12117.	2.8	55
25	Few-Layer Siloxene as an Electrode for Superior High-Rate Zinc Ion Hybrid Capacitors. ACS Energy Letters, 2021, 6, 1786-1794.	8.8	50
26	A Flexible Aqueous Zinc–lodine Microbattery with Unprecedented Energy Density. Advanced Materials, 2022, 34, e2109450.	11.1	49
27	Reborn Threeâ€Dimensional Graphene with Ultrahigh Volumetric Desalination Capacity. Advanced Materials, 2021, 33, e2105853.	11.1	48
28	The First Flexible Dual″on Microbattery Demonstrates Superior Capacity and Ultrahigh Energy Density: Small and Powerful. Advanced Functional Materials, 2020, 30, 2002086.	7.8	43
29	Oneâ€pot Synthesis of Nitrogen and Phosphorus Coâ€doped Graphene and Its Use as Highâ€performance Electrocatalyst for Oxygen Reduction Reaction. Chemistry - an Asian Journal, 2015, 10, 2609-2614.	1.7	42
30	MEG actualized by high-valent metal carrier transport. Nano Energy, 2019, 65, 104047.	8.2	40
31	Graphene Oxide Assemblies for Sustainable Clean-Water Harvesting and Green-Electricity Generation. Accounts of Materials Research, 2021, 2, 97-107.	5.9	38
32	A Responsive Battery with Controlled Energy Release. Angewandte Chemie - International Edition, 2016, 55, 14643-14647.	7.2	37
33	Retarding Ostwald Ripening to Directly Cast 3D Porous Graphene Oxide Bulks at Open Ambient Conditions. ACS Nano, 2020, 14, 6249-6257.	7.3	37
34	Uniquely Arranged Grapheneâ€onâ€Graphene Structure as a Binderâ€Free Anode for Highâ€Performance Lithiumâ€ion Batteries. Small, 2014, 10, 5035-5041.	5.2	36
35	Processing and manufacturing of graphene-based microsupercapacitors. Materials Chemistry Frontiers, 2018, 2, 1750-1764.	3.2	36
36	Graphitic C3N4-Pt nanohybrids supported on a graphene network for highly efficient methanol oxidation. Science China Materials, 2015, 58, 21-27.	3.5	34

#	Article	IF	Citations
37	Frontiers of carbon materials as capacitive deionization electrodes. Dalton Transactions, 2020, 49, 5006-5014.	1.6	32
38	Preparation of multifunctional microchannel-network graphene foams. Journal of Materials Chemistry A, 2014, 2, 16786-16792.	5. 2	29
39	Synthesis and characterization of axial heterojunction inorganic–organic semiconductor nanowire arrays. Dalton Transactions, 2011, 40, 10804.	1.6	28
40	2D Silicene Nanosheets for High-Performance Zinc-Ion Hybrid Capacitor Application. ACS Nano, 2021, 15, 16533-16541.	7.3	26
41	A Responsive Battery with Controlled Energy Release. Angewandte Chemie, 2016, 128, 14863-14867.	1.6	23
42	Built Structure of Ordered Vertically Aligned Codoped Carbon Nanowire Arrays for Supercapacitors. ACS Applied Materials & Distribution (2017), 9, 24840-24845.	4.0	19
43	Growth Control for Architecture Molecular Conductor of Low Dimension Nanostructures. Journal of Physical Chemistry C, 2010, 114, 12982-12986.	1.5	16
44	Electronic logic gates from three-segment nanowires featuring two p–n heterojunctions. NPG Asia Materials, 2013, 5, e59-e59.	3.8	16
45	Carbon nanotube–nanopipe composite vertical arrays for enhanced electrochemical capacitance. Carbon, 2013, 64, 507-515.	5.4	15
46	The Advance and Perspective on Electrode Materials for Metal–Ion Hybrid Capacitors. Advanced Energy and Sustainability Research, 2021, 2, 2100022.	2.8	13
47	High-performance flexible and integratable MEG devices from sulfonated carbon solid acids containing strong Brønsted acid sites. Journal of Materials Chemistry A, 2021, 9, 24488-24494.	5.2	8
48	Growth of axial nested P–N heterojunction nanowires for high performance diodes. Physical Chemistry Chemical Physics, 2015, 17, 1785-1789.	1.3	7
49	Customâ€Built Graphene Acousticâ€Absorbing Aerogel for Audio Signal Recognition. Advanced Materials Interfaces, 2021, 8, 2100227.	1.9	2
50	Power from water and graphene. Chinese Science Bulletin, 2018, 63, 2806-2817.	0.4	2
51	Solar-Driven Soil Remediation along with the Generation of Water Vapor and Electricity. Nanomaterials, 2022, 12, 1800.	1.9	2
52	Axial heterostructure nanoarray as allâ€solidâ€state microâ€supercapacitors. International Journal of Energy Research, 2019, 43, 6013-6025.	2.2	1
53	Growing ordered arrays of vertically aligned copolymer nanowires for supercapacitors with high stability. Journal of Solid State Electrochemistry, 2017, 21, 3121-3127.	1.2	1