
Holger Tost

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3882473/publications.pdf Version: 2024-02-01

HOLCEP TOST

#	Article	IF	CITATIONS
1	The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere. Atmospheric Chemistry and Physics, 2006, 6, 5067-5104.	1.9	528
2	Development cycle 2 of the Modular Earth Submodel System (MESSy2). Geoscientific Model Development, 2010, 3, 717-752.	1.3	398
3	The AeroCom evaluation and intercomparison of organic aerosol in global models. Atmospheric Chemistry and Physics, 2014, 14, 10845-10895.	1.9	363
4	Bacteria in the global atmosphere – Part 2: Modeling of emissions and transport between different ecosystems. Atmospheric Chemistry and Physics, 2009, 9, 9281-9297.	1.9	284
5	Technical Note: The Modular Earth Submodel System (MESSy) - a new approach towards Earth System Modeling. Atmospheric Chemistry and Physics, 2005, 5, 433-444.	1.9	282
6	Technical note: A new comprehensive SCAVenging submodel for global atmospheric chemistry modelling. Atmospheric Chemistry and Physics, 2006, 6, 565-574.	1.9	265
7	Global distribution of the effective aerosol hygroscopicity parameter for CCN activation. Atmospheric Chemistry and Physics, 2010, 10, 5241-5255.	1.9	230
8	Technical Note: An implementation of the dry removal processes DRY DEPosition and SEDImentation in the Modular Earth Submodel System (MESSy). Atmospheric Chemistry and Physics, 2006, 6, 4617-4632.	1.9	216
9	Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) versionÂ2.51. Geoscientific Model Development, 2016, 9, 1153-1200.	1.3	208
10	Technical note: Implementation of prescribed (OFFLEM), calculated (ONLEM), and pseudo-emissions (TNUDGE) of chemical species in the Modular Earth Submodel System (MESSy). Atmospheric Chemistry and Physics, 2006, 6, 3603-3609.	1.9	198
11	Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1). Geoscientific Model Development, 2010, 3, 391-412.	1.3	178
12	The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate. Atmospheric Chemistry and Physics, 2012, 12, 1239-1253.	1.9	178
13	The Palaeoanthropocene – The beginnings of anthropogenic environmental change. Anthropocene, 2013, 3, 83-88.	1.6	178
14	Lightning and convection parameterisations – uncertainties in global modelling. Atmospheric Chemistry and Physics, 2007, 7, 4553-4568.	1.9	163
15	The atmospheric chemistry box model CAABA/MECCA-3.0. Geoscientific Model Development, 2011, 4, 373-380.	1.3	161
16	Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity. Atmospheric Chemistry and Physics, 2014, 14, 4679-4713.	1.9	148
17	Influence of different convection parameterisations in a GCM. Atmospheric Chemistry and Physics, 2006, 6, 5475-5493.	1.9	139
18	Distributions and regional budgets of aerosols and their precursors simulated with the EMAC chemistry-climate model. Atmospheric Chemistry and Physics, 2012, 12, 961-987.	1.9	130

HOLGER TOST

#	Article	IF	CITATIONS
19	AOD trends during 2001–2010 from observations and model simulations. Atmospheric Chemistry and Physics, 2015, 15, 5521-5535.	1.9	123
20	Uncertainties in atmospheric chemistry modelling due to convection parameterisations and subsequent scavenging. Atmospheric Chemistry and Physics, 2010, 10, 1931-1951.	1.9	113
21	Stratospheric dryness: model simulations and satellite observations. Atmospheric Chemistry and Physics, 2007, 7, 1313-1332.	1.9	109
22	Global cloud and precipitation chemistry and wet deposition: tropospheric model simulations with ECHAM5/MESSy1. Atmospheric Chemistry and Physics, 2007, 7, 2733-2757.	1.9	104
23	Simulating organic species with the global atmospheric chemistry general circulation model ECHAM5/MESSy1: a comparison of model results with observations. Atmospheric Chemistry and Physics, 2007, 7, 2527-2550.	1.9	95
24	Effects of business-as-usual anthropogenic emissions on air quality. Atmospheric Chemistry and Physics, 2012, 12, 6915-6937.	1.9	76
25	Evaluation of observed and modelled aerosol lifetimes using radioactive tracers of opportunity and an ensemble of 19 global models. Atmospheric Chemistry and Physics, 2016, 16, 3525-3561.	1.9	75
26	Technical Note: Coupling of chemical processes with the Modular Earth Submodel System (MESSy) submodel TRACER. Atmospheric Chemistry and Physics, 2008, 8, 1677-1687.	1.9	65
27	Stratospheric sulfur and its implications for radiative forcing simulated by the chemistry climate model EMAC. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2103-2118.	1.2	59
28	Distribution of hydrogen peroxide and formaldehyde over Central Europe during the HOOVER project. Atmospheric Chemistry and Physics, 2011, 11, 4391-4410.	1.9	55
29	A new radiation infrastructure for the Modular Earth Submodel System (MESSy, based on version) Tj ETQq1 1 0.	784314 rg 1.3	$_{51}^{\rm BT}$ /Overlock
30	EMAC model evaluation and analysis of atmospheric aerosol properties and distribution with a focus on the Mediterranean region. Atmospheric Research, 2012, 114-115, 38-69.	1.8	48
31	Technical Note: Simulation of detailed aerosol chemistry on the global scale using MECCA-AERO. Atmospheric Chemistry and Physics, 2007, 7, 2973-2985.	1.9	37
32	Sensitivity of aerosol radiative effects to different mixing assumptions in the AEROPT 1.0 submodel of the EMAC atmospheric-chemistry–climate model. Geoscientific Model Development, 2014, 7, 2503-2516.	1.3	35
33	Impact of mineral dust on cloud formation in a Saharan outflow region. Atmospheric Chemistry and Physics, 2012, 12, 11383-11393.	1.9	34
34	Global and regional impacts of HONO on the chemical composition of clouds and aerosols. Atmospheric Chemistry and Physics, 2014, 14, 1167-1184.	1.9	32
35	Sensitivity of transatlantic dust transport to chemical aging and related atmospheric processes. Atmospheric Chemistry and Physics, 2017, 17, 3799-3821.	1.9	31
36	Consistent simulation of bromine chemistry from the marine boundary layer to the stratosphere – Part 1: Model description, sea salt aerosols and pH. Atmospheric Chemistry and Physics, 2008, 8, 5899-5917.	1.9	30

HOLGER TOST

#	Article	IF	CITATIONS
37	Modeling the aerosol chemical composition of the tropopause over the Tibetan Plateau during the Asian summer monsoon. Atmospheric Chemistry and Physics, 2019, 19, 11587-11612.	1.9	24
38	A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1. Atmospheric Chemistry and Physics, 2020, 20, 1341-1361.	1.9	24
39	Urban emission hot spots as sources for remote aerosol deposition. Geophysical Research Letters, 2012, 39, .	1.5	23
40	Urban Trees and Their Impact on Local Ozone Concentration—A Microclimate Modeling Study. Atmosphere, 2019, 10, 154.	1.0	23
41	Uncertainties in future climate predictions due to convection parameterisations. Atmospheric Chemistry and Physics, 2014, 14, 5561-5576.	1.9	21
42	Chemistry–climate interactions of aerosol nitrate from lightning. Atmospheric Chemistry and Physics, 2017, 17, 1125-1142.	1.9	20
43	A multi-model assessment of the impact of sea spray geoengineering on cloud droplet number. Atmospheric Chemistry and Physics, 2012, 12, 11647-11663.	1.9	19
44	Global aerosol modeling with MADE3 (v3.0) in EMAC (based on v2.53): model description and evaluation. Geoscientific Model Development, 2019, 12, 541-579.	1.3	17
45	Improvements of organic aerosol representations and their effects in large-scale atmospheric models. Atmospheric Chemistry and Physics, 2012, 12, 8687-8709.	1.9	16
46	The 1-way on-line coupled model system MECO(n) – PartÂ4: Chemical evaluation (based on MESSyÂv2.52). Geoscientific Model Development, 2016, 9, 3545-3567.	1.3	14
47	Simulation of organics in the atmosphere: evaluation of EMACv2.54 with the Mainz Organic Mechanism (MOM) coupled to the ORACLE (v1.0) submodel. Geoscientific Model Development, 2022, 15, 2673-2710.	1.3	13
48	Implementation of a comprehensive ice crystal formation parameterization for cirrus and mixed-phase clouds in the EMAC model (based on MESSy 2.53). Geoscientific Model Development, 2018, 11, 4021-4041.	1.3	12
49	Including vegetation dynamics in an atmospheric chemistry-enabled general circulation model: linking LPJ-GUESS (v4.0) with the EMAC modelling system (v2.53). Geoscientific Model Development, 2020, 13, 1285-1309.	1.3	12
50	Implementation of the Community Earth System Model (CESM) version 1.2.1 as a new base model into version 2.50 of the MESSy framework. Geoscientific Model Development, 2016, 9, 125-135.	1.3	11
51	Profile information on CO from SCIAMACHY observations using cloud slicing and comparison with model simulations. Atmospheric Chemistry and Physics, 2014, 14, 1717-1732.	1.9	9
52	Aerosol pollution potential from major population centers. Atmospheric Chemistry and Physics, 2013, 13, 4203-4222.	1.9	8
53	Revision of the convective transport module CVTRANS 2.4 in the EMAC atmospheric chemistry–climate model. Geoscientific Model Development, 2015, 8, 2435-2445.	1.3	7
54	Cold cloud microphysical process rates in a global chemistry–climate model. Atmospheric Chemistry and Physics, 2021, 21, 1485-1505.	1.9	7

HOLGER TOST

#	Article	IF	CITATIONS
55	In situ observation of new particle formation (NPF) in the tropical tropopause layer of the 2017 Asian monsoon anticyclone – Part 2: NPF inside ice clouds. Atmospheric Chemistry and Physics, 2021, 21, 13455-13481.	1.9	5
56	A fast stratospheric chemistry solver: the E4CHEM submodel for the atmospheric chemistry global circulation model EMAC. Geoscientific Model Development, 2010, 3, 321-328.	1.3	2
57	Global simulation of semivolatile organic compounds – development and evaluation of the MESSy submodel SVOC (v1.0). Geoscientific Model Development, 2019, 12, 3585-3607.	1.3	2
58	Evaluation of the coupled high-resolution atmospheric chemistry model system MECO(n) using in situ and MAX-DOAS NO ₂ measurements. Atmospheric Measurement Techniques, 2021, 14, 5241-5269.	1.2	2
59	Superparameterised cloud effects in the EMAC general circulation model (v2.50) – influences of model configuration. Geoscientific Model Development, 2020, 13, 2671-2694.	1.3	Ο