Long-Yi Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3882203/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Visible-Light Driven Photocatalytic Degradation of Organic Dyes over Ordered Mesoporous Cd _{<i>x</i>} Zn _{1–<i>x</i>} S Materials. Journal of Physical Chemistry C, 2017, 121, 5137-5144.	3.1	65
2	Facile and efficient synthesis of 1-haloalkynes via DBU-mediated reaction of terminal alkynes and N-haloimides under mild conditions. RSC Advances, 2014, 4, 30046-30049.	3.6	43
3	Ordered Nanostructures from the Self-Assembly of Reactive Coil-Rod-Coil Molecules. Angewandte Chemie - International Edition, 2006, 45, 650-653.	13.8	41
4	Shape-Persistent Macromolecular Disks from Reactive Supramolecular Rod Bundles. Journal of the American Chemical Society, 2004, 126, 12208-12209.	13.7	34
5	Donor–acceptor interaction-driven self-assembly of amphiphilic rod–coil molecules into supramolecular nanoassemblies. Nanoscale, 2017, 9, 17975-17982.	5.6	29
6	Synthesis and self-assembly of coil–rod–coil molecules with lateral methyl and ethyl groups in the center of the rod segment. Soft Matter, 2010, 6, 5993.	2.7	28
7	Structural inversion in 3-D hexagonal organization of coil–rod–coil molecule. Chemical Communications, 2005, , 1197-1199.	4.1	25
8	Self-Assembly of n-Shaped Rod–Coil Molecules into Thermoresponsive Nanoassemblies: Construction of Reversible Helical Nanofibers in Aqueous Environment. Macromolecules, 2016, 49, 5912-5920.	4.8	24
9	Supramolecular nanostructures from selfâ€assembly of Tâ€shaped rod building block oligomers. Journal of Polymer Science Part A, 2013, 51, 5021-5028.	2.3	21
10	Synthesis and selfâ€assembly of rodâ€coil molecules with nâ€shaped rod building block. Journal of Polymer Science Part A, 2010, 48, 1415-1422.	2.3	20
11	Synthesis and self-assembly of amphiphilic bent-shaped molecules based on dibenzo[a,c]phenazine and poly(ethylene oxide) units. Polymer Chemistry, 2015, 6, 7395-7401.	3.9	19
12	Construction of Various Supramolecular Assemblies from Rod–Coil Molecules Containing Biphenyl and Anthracene Groups Driven by Donor–Acceptor Interactions. ACS Applied Materials & Interfaces, 2018, 10, 22529-22536.	8.0	18
13	Synthesis and self-assembly of oligomers containing cruciform 9,10-bis(arylethynyl)anthracene unit: formation of supramolecular nanostructures based on rod-length-dependent organization. Tetrahedron, 2014, 70, 1230-1235.	1.9	16
14	Improved color quality in double-EML WOLEDs by using a tetradentate Pt(<scp>ii</scp>) complex as a green/red emitter. Journal of Materials Chemistry C, 2021, 9, 3384-3390.	5.5	16
15	Tetrakis(tetrathiafulvalene–tetrathiacrown ether)porphyrazine Triads: Synthesis, Photophysical, and Electrochemical Properties. European Journal of Organic Chemistry, 2012, 2012, 1138-1146.	2.4	15
16	Morphological Control of Coil–Rod–Coil Molecules Containing <i>m</i> -Terphenyl Group: Construction of Helical Fibers and Helical Nanorings in Aqueous Solution. Langmuir, 2018, 34, 10613-10621.	3.5	15
17	Assembly of tetra-nuclear YbIII-containing selenotungstate clusters: synthesis, structures, and magnetic properties. Dalton Transactions, 2021, 50, 11535-11541.	3.3	15
18	Self-organizing p-quinquephenyl building blocks incorporating lateral hydroxyl and methoxyl groups into supramolecular nano-assemblies. Soft Matter, 2016, 12, 3860-3867.	2.7	14

Long-Yi Jin

#	Article	IF	CITATIONS
19	Photo-controlled reversible assemblies from rod-coil molecules with azobenzene group. Dyes and Pigments, 2019, 171, 107694.	3.7	14
20	Ordered nanostructures from selfâ€assembly of Hâ€shaped coil–rod–coil molecules. Journal of Polymer Science Part A, 2015, 53, 85-92.	2.3	13
21	Control of supramolecular nanoassemblies by tuning the interactions of bent-shaped rod–coil molecules. Soft Matter, 2017, 13, 3334-3340.	2.7	11
22	Stimuli-Responsive Supramolecular Chirality Switching and Nanoassembly Constructed by n-Shaped Amphiphilic Molecules in Aqueous Solution. Langmuir, 2021, 37, 1215-1224.	3.5	11
23	Selfâ€assembly of rodâ€coil molecules into lateral chainâ€lengthâ€dependent supramolecular organization. Journal of Applied Polymer Science, 2012, 123, 1007-1014.	2.6	10
24	Self-assembly of coil-rod-coil molecules into bicontinuous cubic and oblique columnar assemblies depending on coil chain length. European Polymer Journal, 2013, 49, 3244-3250.	5.4	10
25	Metal-free C–N cross-coupling of electrophilic compounds and N-haloimides. RSC Advances, 2015, 5, 65600-65603.	3.6	10
26	Supramolecular helical nanostructures from self-assembly of coil–rod–coil amphiphilic molecules incorporating the dianthranide unit. Soft Matter, 2018, 14, 6822-6827.	2.7	10
27	Self-assembly of propeller-shaped amphiphilic molecules: control over the supramolecular morphology and photoproperties of their aggregates. Soft Matter, 2021, 17, 6661-6668.	2.7	10
28	Two-Dimensional Cationic Networks and Their Spherical Curvature with Tunable Opening–Closing. Nano Letters, 2019, 19, 9131-9137.	9.1	9
29	Ordered nanostructures from self-assembly of rod–coil oligomers with n-shaped rod and dendritic poly(ethylene oxide) coil segment. Supramolecular Chemistry, 2014, 26, 729-735.	1.2	8
30	Mercury ion–DNA specificity triggers a distinctive photoluminescence depression in organic semiconductor probes guided with a thymine-rich oligonucleotide sequence. Nanoscale, 2018, 10, 17540-17545.	5.6	8
31	Supramolecular nanostructures constructed by rod–coil molecular isomers: effect of rod sequences on molecular assembly. Soft Matter, 2019, 15, 6718-6724.	2.7	8
32	The relationship between molecular structure and supramolecular morphology in the self-assembly of rod–coil molecules with oligoether chains. Soft Matter, 2020, 16, 2224-2229.	2.7	8
33	Construction of Supramolecular Assemblies from Selfâ€Organization of Amphiphilic Molecular Isomers. Chemistry - an Asian Journal, 2016, 11, 2265-2270.	3.3	7
34	Support effect of Ni/mesoporous silica catalysts for CO2 reforming of CH4. Research on Chemical Intermediates, 2018, 44, 3867-3878.	2.7	7
35	A mitochondria-tracing fluorescent probe for real-time detection of mitochondrial dynamics and hypochlorous acid in live cells. Dyes and Pigments, 2022, 201, 110227.	3.7	7
36	Threeâ€dimensional crystalline supramolecular nanostructures from selfâ€assembly of rod–coil molecules incorporating lateral carboxyl group in the middle of the rod segment. Polymer International, 2015, 64, 1408-1414.	3.1	6

Long-Yi Jin

#	Article	IF	CITATIONS
37	Construction of Supramolecular Nanostructures from V-Shaped Amphiphilic Rod-Coil Molecules Incorporating Phenazine Units. Polymers, 2017, 9, 685.	4.5	6
38	Nanoassemblies formed from amphiphilic pillar[5]arene–rod–coil macromolecules in water for the detection of aliphatic diamines. Dyes and Pigments, 2022, 199, 110052.	3.7	6
39	Self-organization of coil-rod-coil molecular isomers with conjugated rod segments into supramolecular honeycomb and lamellar assemblies. Polymer International, 2014, 63, 1070-1075.	3.1	5
40	Efficient and reusable ordered mesoporous WOx/SnO2 catalyst for oxidative desulfurization of dibenzothiophene. RSC Advances, 2021, 11, 27453-27460.	3.6	4
41	Construction of nanoaggregates from amphiphilic supramolecules containing barbiturate and <scp>Hamilton</scp> wedge units. Polymer International, 2022, 71, 478-486.	3.1	4
42	Highly Ordered Mesoporous Cobalt-Copper Composite Oxides for Preferential CO Oxidation. Catalysis Surveys From Asia, 2017, 21, 45-52.	2.6	2
43	The mechanism of the selective binding ability between opiate metabolites and acyclic cucurbit[4]uril: an MD/DFT study. Physical Chemistry Chemical Physics, 2021, 23, 2186-2192.	2.8	1