Daria EzeriÅ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3882138/publications.pdf

Version: 2024-02-01

		840776	996975
17	1,278 citations	11	15
papers	citations	h-index	g-index
17	17	17	2112
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	N-Acetyl Cysteine Functions as a Fast-Acting Antioxidant by Triggering Intracellular H2S and Sulfane Sulfur Production. Cell Chemical Biology, 2018, 25, 447-459.e4.	5.2	270
2	Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis. Nature Chemical Biology, 2013, 9, 119-125.	8.0	247
3	Ultrasensitive Genetically Encoded Indicator for Hydrogen Peroxide Identifies Roles for the Oxidant in Cell Migration and Mitochondrial Function. Cell Metabolism, 2020, 31, 642-653.e6.	16.2	202
4	Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes. Nature Chemical Biology, 2016, 12, 437-443.	8.0	187
5	The mechanism of action of N-acetylcysteine (NAC): The emerging role of H2S and sulfane sulfur species. , 2021, 228, 107916.		154
6	Imaging dynamic redox processes with genetically encoded probes. Journal of Molecular and Cellular Cardiology, 2014, 73, 43-49.	1.9	59
7	Peroxiredoxins wear many hats: Factors that fashion their peroxide sensing personalities. Redox Biology, 2021, 42, 101959.	9.0	40
8	Protein Promiscuity in H ₂ O ₂ Signaling. Antioxidants and Redox Signaling, 2019, 30, 1285-1324.	5.4	26
9	Oxidative stress as candidate therapeutic target to overcome microenvironmental protection of CLL. Leukemia, 2020, 34, 115-127.	7.2	23
10	Oxidative Stress-Induced STIM2 Cysteine Modifications Suppress Store-Operated Calcium Entry. Cell Reports, 2020, 33, 108292.	6.4	19
11	DNA polymorphism and epigenetic marks modulate the affinity of a scaffold/matrix attachment region to the nuclear matrix. European Journal of Human Genetics, 2014, 22, 1117-1123.	2.8	14
12	Exploring ORFan Domains in Giant Viruses: Structure of Mimivirus Sulfhydryl Oxidase R596. PLoS ONE, 2012, 7, e50649.	2.5	14
13	Hypocrates is a genetically encoded fluorescent biosensor for (pseudo)hypohalous acids and their derivatives. Nature Communications, 2022, 13, 171.	12.8	9
14	Prdx1 Interacts with ASK1 upon Exposure to H2O2 and Independently of a Scaffolding Protein. Antioxidants, 2021, 10, 1060.	5.1	6
15	Thiol-disulphide independent in-cell trapping for the identification of peroxiredoxin 2 interactors. Redox Biology, 2021, 46, 102066.	9.0	6
16	Redox regulation of the mitochondrial calcium transport machinery. Current Opinion in Physiology, 2020, 17, 138-148.	1.8	1
17	Sugar-based cysteine thiols recruited for oxidative stress defense and redox regulation. , 2022, , 533-554.		1