Emilie Viennois

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3882096/publications.pdf

Version: 2024-02-01

71 papers

4,364 citations

126858 33 h-index 64 g-index

74 all docs

74 docs citations

times ranked

74

5730 citing authors

#	Article	IF	Citations
1	Connecting the Dots: Dietary Fat, Microbiota Dysbiosis, Altered Metabolome, and Colon Cancer. Gastroenterology, 2022, 162, 38-39.	0.6	2
2	Infrared spectrometric biomarkers for ulcerative colitis screening using human serum samples. Journal of Biophotonics, 2022, 15, e202100307.	1.1	4
3	MicroRNA and Gut Microbiota: Tiny but Mighty—Novel Insights into Their Cross-talk in Inflammatory Bowel Disease Pathogenesis and Therapeutics. Journal of Crohn's and Colitis, 2022, 16, 992-1005.	0.6	26
4	Point-of-Care Monitoring of Colitis Using Intestinal Alkaline Phosphatase in Inflammatory Bowel Disease. ACS Sensors, 2021, 6, 698-702.	4.0	5
5	Toward Point-of-Care Diagnostics to Monitor MMP-9 and TNF-α Levels in Inflammatory Bowel Disease. ACS Omega, 2021, 6, 6582-6587.	1.6	11
6	Consumption of Select Dietary Emulsifiers Exacerbates the Development of Spontaneous Intestinal Adenoma. International Journal of Molecular Sciences, 2021, 22, 2602.	1.8	16
7	Direct impact of commonly used dietary emulsifiers on human gut microbiota. Microbiome, 2021, 9, 66.	4.9	108
8	Dietary Emulsifiers Directly Impact Adherent-Invasive E.Âcoli Gene Expression to Drive Chronic Intestinal Inflammation. Cell Reports, 2020, 33, 108229.	2.9	66
9	Impact of PepT1 deletion on microbiota composition and colitis requires multiple generations. Npj Biofilms and Microbiomes, 2020, 6, 27.	2.9	6
10	Erythroid differentiation regulator-1 induced by microbiota in early life drives intestinal stem cell proliferation and regeneration. Nature Communications, 2020, 11, 513.	5.8	38
11	Examination of food consumption in United States adults and the prevalence of inflammatory bowel disease using National Health Interview Survey 2015. PLoS ONE, 2020, 15, e0232157.	1.1	7
12	Host-derived fecal microRNAs can indicate gut microbiota healthiness and ability to induce inflammation. Theranostics, 2019, 9, 4542-4557.	4.6	52
13	Chronic Inflammatory Diseases: Are We Ready for Microbiota-based Dietary Intervention?. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 61-71.	2.3	16
14	Early-Life Microbiota Exposure Restricts Myeloid-Derived Suppressor Cell–Driven Colonic Tumorigenesis. Cancer Immunology Research, 2019, 7, 544-551.	1.6	23
15	In vitro Intestinal Epithelial Wound-healing Assays Using Electric Cell-Substrate Impedance Sensing Instrument. Bio-protocol, 2019, 9, .	0.2	4
16	Isolation, Purification, and Characterization of Ginger-derived Nanoparticles (GDNPs) from Ginger, Rhizome of Zingiber officinale. Bio-protocol, 2019, 9, .	0.2	16
17	First victim, later aggressor: How the intestinal microbiota drives the pro-inflammatory effects of dietary emulsifiers?. Gut Microbes, 2018, 9, 289-291.	4.3	55
18	Overexpression of CD98 in intestinal epithelium dysregulates miRNAs and their targeted proteins along the ileal villus-crypt axis. Scientific Reports, 2018, 8, 16220.	1.6	4

#	Article	IF	Citations
19	Function, Regulation, and Pathophysiological Relevance of the POT Superfamily, Specifically PepT1 in Inflammatory Bowel Disease., 2018, 8, 731-760.		30
20	Silencing of Intestinal Glycoprotein CD98 by Orally Targeted Nanoparticles Enhances Chemosensitization of Colon Cancer. ACS Nano, 2018, 12, 5253-5265.	7.3	78
21	Protein secondary structure analysis of dried blood serum using infrared spectroscopy to identify markers for colitis screening. Journal of Biophotonics, 2018, 11, e201700057.	1.1	27
22	Purification of Total RNA from DSS-treated Murine Tissue via Lithium Chloride Precipitation. Bio-protocol, 2018, 8, .	0.2	26
23	Minimally invasive screening for colitis using attenuated total internal reflectance fourier transform infrared spectroscopy. Journal of Biophotonics, 2017, 10, 465-472.	1.1	28
24	Orally Targeted Delivery of Tripeptide KPV via Hyaluronic Acid-Functionalized Nanoparticles Efficiently Alleviates Ulcerative Colitis. Molecular Therapy, 2017, 25, 1628-1640.	3.7	138
25	Ectopic Expression of Innate Immune Protein, Lipocalin-2, in Lactococcus lactis Protects Against Gut and Environmental Stressors. Inflammatory Bowel Diseases, 2017, 23, 1120-1132.	0.9	11
26	MiRNA Quantitation with Microelectrode Sensors Enabled by Enzymeless Electrochemical Signal Amplification. Methods in Molecular Biology, 2017, 1580, 249-263.	0.4	2
27	Infrared spectroscopy as a screening technique for colitis. Proceedings of SPIE, 2017, , .	0.8	0
28	Serum miRNA signature diagnoses and discriminates murine colitis subtypes and predicts ulcerative colitis in humans. Scientific Reports, 2017, 7, 2520.	1.6	28
29	Dietary Emulsifier–Induced Low-Grade Inflammation Promotes Colon Carcinogenesis. Cancer Research, 2017, 77, 27-40.	0.4	187
30	Colitis screening using IR spectroscopy of serum samples. , 2017, , .		1
31	Combination Therapy for Ulcerative Colitis: Orally Targeted Nanoparticles Prevent Mucosal Damage and Relieve Inflammation. Theranostics, 2016, 6, 2250-2266.	4.6	174
32	Urocanic acid-modified chitosan nanoparticles can confer anti-inflammatory effect by delivering CD98 siRNA to macrophages. Colloids and Surfaces B: Biointerfaces, 2016, 143, 186-193.	2.5	26
33	Edible Ginger-derived Nano-lipids Loaded with Doxorubicin as a Novel Drug-delivery Approach for Colon Cancer Therapy. Molecular Therapy, 2016, 24, 1783-1796.	3.7	226
34	PepT1 Expression Helps Maintain Intestinal Homeostasis by Mediating the Differential Expression of miRNAs along the Crypt-Villus Axis. Scientific Reports, 2016, 6, 27119.	1.6	16
35	A Hyaluronidase-Responsive Nanoparticle-Based Drug Delivery System for Targeting Colon Cancer Cells. Cancer Research, 2016, 76, 7208-7218.	0.4	108
36	Critical Role of PepT1 in Promoting Colitis-Associated Cancer and Therapeutic Benefits of the Anti-inflammatory PepT1-Mediated Tripeptide KPV in a Murine Model. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 340-357.	2.3	24

3

#	Article	IF	Citations
37	Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials, 2016, 101, 321-340.	5 . 7	492
38	Plant derived edible nanoparticles as a new therapeutic approach against diseases. Tissue Barriers, 2016, 4, e1134415.	1.6	206
39	O-016 Yl Longitudinal Study of Circulating miRNA Biomarkers in Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2016, 22, S6.	0.9	2
40	Granulocyte-Macrophage Colony-Stimulating Factor-Activated Monocytes as an Anti-inflammatory Player in the Intestine. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1, 354-355.	2.3	0
41	Biomarkers of Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2015, 21, 1.	0.9	25
42	Identification of the Functions of Liver X Receptor-Î ² in Sertoli Cells Using a Targeted Expression-Rescue Model. Endocrinology, 2015, 156, 4545-4557.	1.4	6
43	Inhibition of MDR1 gene expression and enhancing cellular uptake forÂeffective colon cancer treatment using dual-surface-functionalized nanoparticles. Biomaterials, 2015, 48, 147-160.	5.7	87
44	Microelectrode miRNA Sensors Enabled by Enzymeless Electrochemical Signal Amplification. Analytical Chemistry, 2015, 87, 8173-8180.	3.2	69
45	Hyaluronic acid-functionalized polymeric nanoparticles for colon cancer-targeted combination chemotherapy. Nanoscale, 2015, 7, 17745-17755.	2.8	131
46	Co-delivery of camptothecin and curcumin by cationic polymeric nanoparticles for synergistic colon cancer combination chemotherapy. Journal of Materials Chemistry B, 2015, 3, 7724-7733.	2.9	120
47	Longitudinal study of circulating protein biomarkers in inflammatory bowel disease. Journal of Proteomics, 2015, 112, 166-179.	1.2	22
48	Colonic miRNA Expression/Secretion, Regulated by Intestinal Epithelial PepT1, Plays an Important Role in Cell-to-Cell Communication during Colitis. PLoS ONE, 2014, 9, e87614.	1.1	27
49	Fab'-bearing siRNA TNF \hat{i} ±-loaded nanoparticles targeted to colonic macrophages offer an effective therapy for experimental colitis. Journal of Controlled Release, 2014, 186, 41-53.	4.8	123
50	Targeting Intestinal Inflammation With CD98 siRNA/PEI–loaded Nanoparticles. Molecular Therapy, 2014, 22, 69-80.	3.7	90
51	Micheliolide, a new sesquiterpene lactone that inhibits intestinal inflammation and colitis-associated cancer. Laboratory Investigation, 2014, 94, 950-965.	1.7	7 5
52	A click-and-release approach to CO prodrugs. Chemical Communications, 2014, 50, 15890-15893.	2.2	95
53	Glycoprotein CD98 as a receptor for colitis-targeted delivery of nanoparticles. Journal of Materials Chemistry B, 2014, 2, 1499.	2.9	37
54	Liver X receptors interfere with the deleterious effect of diethylstilbestrol on testicular physiology. Biochemical and Biophysical Research Communications, 2014, 446, 656-662.	1.0	8

#	Article	IF	CITATIONS
55	Nanoparticles With Surface Antibody Against CD98 and Carrying CD98 Small Interfering RNA Reduce Colitis in Mice. Gastroenterology, 2014, 146, 1289-1300.e19.	0.6	152
56	Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF- $\hat{l}\pm$ RNA interference for IBD therapy. Biomaterials, 2013, 34, 7471-7482.	5.7	168
57	Oxysterol receptors and their therapeutic applications in cancer conditions. Expert Opinion on Therapeutic Targets, 2013, 17, 1029-1038.	1.5	34
58	Knockout of Ste20-Like Proline/Alanine-Rich Kinase (SPAK) Attenuates Intestinal Inflammation in Mice. American Journal of Pathology, 2013, 182, 1617-1628.	1.9	28
59	Dextran sodium sulfate inhibits the activities of both polymerase and reverse transcriptase: lithium chloride purification, a rapid and efficient technique to purify RNA. BMC Research Notes, 2013, 6, 360.	0.6	133
60	PepT1 expressed in immune cells has an important role in promoting the immune response during experimentally induced colitis. Laboratory Investigation, 2013, 93, 888-899.	1.7	28
61	Nanotechnology in diagnostics and therapeutics for gastrointestinal disorders. Digestive and Liver Disease, 2013, 45, 995-1002.	0.4	54
62	Liver X Receptors Protect from Development of Prostatic Intra-Epithelial Neoplasia in Mice. PLoS Genetics, 2013, 9, e1003483.	1.5	38
63	Intestinal Epithelial CD98 Directly Modulates the Innate Host Response to Enteric Bacterial Pathogens. Infection and Immunity, 2013, 81, 923-934.	1.0	29
64	NF-κB pathway in colitis-associated cancers. Translational Gastrointestinal Cancer, 2013, 2, 21-29.	3.0	46
65	Intestinal epithelial CD98 synthesis specifically modulates expression of colonic microRNAs during colitis. American Journal of Physiology - Renal Physiology, 2012, 302, G1282-G1291.	1.6	11
66	Lxrα Regulates the Androgen Response in Prostate Epithelium. Endocrinology, 2012, 153, 3211-3223.	1.4	20
67	Oxysterol receptors, AKT and prostate cancer. Current Opinion in Pharmacology, 2012, 12, 724-728.	1.7	36
68	Selective liver X receptor modulators (SLiMs): What use in human health?. Molecular and Cellular Endocrinology, 2012, 351, 129-141.	1.6	102
69	Targeting liver X receptors in human health: deadlock or promising trail?. Expert Opinion on Therapeutic Targets, 2011, 15, 219-232.	1.5	73
70	Liver X receptors, lipids and their reproductive secrets in the male. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 974-981.	1.8	41
71	Liver X Receptor activation downregulates AKT survival signaling in lipid rafts and induces apoptosis of prostate cancer cells. Oncogene, 2010, 29, 2712-2723.	2.6	166