Alexandria L Pivovaroff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3881899/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Severe declines in hydraulic capacity and associated carbon starvation drive mortality in seawater exposed Sitka-spruce (Picea sitchensis) trees. Environmental Research Communications, 2022, 4, 035005.	0.9	4
2	The influence of increasing atmospheric <scp>CO₂</scp> , temperature, and vapor pressure deficit on seawaterâ€induced tree mortality. New Phytologist, 2022, 235, 1767-1779.	3.5	12
3	Responses of functional traits to seven-year nitrogen addition in two tree species: coordination of hydraulics, gas exchange and carbon reserves. Tree Physiology, 2021, 41, 190-205.	1.4	17
4	Declining carbohydrate content of Sitka-spruce treesdying from seawater exposure. Plant Physiology, 2021, 185, 1682-1696.	2.3	10
5	A reporting format for leaf-level gas exchange data and metadata. Ecological Informatics, 2021, 61, 101232.	2.3	22
6	Hydraulic architecture explains species moisture dependency but not mortality rates across a tropical rainfall gradient. Biotropica, 2021, 53, 1213-1225.	0.8	6
7	Seawater exposure causes hydraulic damage in dying Sitka-spruce trees. Plant Physiology, 2021, 187, 873-885.	2.3	10
8	Assessing climate change impacts on live fuel moisture and wildfire risk using a hydrodynamic vegetation model. Biogeosciences, 2021, 18, 4005-4020.	1.3	19
9	Stability of tropical forest tree carbonâ€water relations in a rainfall exclusion treatment through shifts in effective water uptake depth. Global Change Biology, 2021, 27, 6454-6466.	4.2	17
10	Plant Functional Traits Predict the Drought Response of Native California Plant Species. International Journal of Plant Sciences, 2020, 181, 256-265.	0.6	3
11	The Effect of Ecophysiological Traits on Live Fuel Moisture Content. Fire, 2019, 2, 28.	1.2	32
12	Stomatal behaviour and stem xylem traits are coordinated for woody plant species under exceptional drought conditions. Plant, Cell and Environment, 2018, 41, 2617-2626.	2.8	60
13	Multiple strategies for drought survival among woody plant species. Functional Ecology, 2016, 30, 517-526.	1.7	119
14	Plant hydraulic responses to long-term dry season nitrogen deposition alter drought tolerance in a Mediterranean-type ecosystem. Oecologia, 2016, 181, 721-731.	0.9	32
15	Testing the â€~microbubble effect' using the Cavitron technique to measure xylem water extraction curves. AoB PLANTS, 2016, 8, .	1.2	21
16	Can vessel dimension explain tolerance toward fungal vascular wilt diseases in woody plants? Lessons from Dutch elm disease and esca disease in grapevine. Frontiers in Plant Science, 2014, 5, 253.	1.7	109
17	Making the best of the worst of times: traits underlying combined shade and drought tolerance of Ruscus aculeatus and Ruscus microglossum (Asparagaceae). Functional Plant Biology, 2014, 41, 11.	1.1	22
18	Coordination of stem and leaf hydraulic conductance in southern <scp>C</scp> alifornia shrubs: a test of the hydraulic segmentation hypothesis. New Phytologist, 2014, 203, 842-850.	3.5	148