Miguel Ängel Peıalva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3880982/publications.pdf

Version: 2024-02-01

		26567	16605
135	16,148	56	123
papers	citations	h-index	g-index
137	137	137	20398
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The type V myosin-containing complex HUM is a RAB11 effector powering movement of secretory vesicles. IScience, 2022, 25, 104514.	1.9	6
2	The fungal RABOME: RAB GTPases acting in the endocytic and exocytic pathways of <i>Aspergillus nidulans</i> (with excursions to other filamentous fungi). Molecular Microbiology, 2021, 116, 53-70.	1.2	22
3	Comment on Dimou et al. Profile of Membrane Cargo Trafficking Proteins and Transporters Expressed under N Source Derepressing Conditions in Aspergillus nidulans. J. Fungi 2021, 7, 560. Journal of Fungi (Basel, Switzerland), 2021, 7, 1037.	1.5	1
4	Tracking exocytosis of a <scp>GPI</scp> â€anchored protein in <i>Aspergillus nidulans</i> . Traffic, 2020, 21, 675-688.	1.3	8
5	<i>En bloc</i> TGN recruitment of <i>Aspergillus</i> TRAPPII reveals TRAPP maturation as unlikely to drive RAB1-to-RAB11 transition. Journal of Cell Science, 2020, 133, .	1.2	11
6	Identification of the guanine nucleotide exchange factor for SAR1 in the filamentous fungal model Aspergillus nidulans. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 118551.	1.9	13
7	Characterization of Aspergillus nidulansÂTRAPPs uncovers unprecedented similarities between fungi and metazoans and reveals the modular assembly of TRAPPII. PLoS Genetics, 2019, 15, e1008557.	1.5	25
8	COPI localizes to the early Golgi in Aspergillus nidulans. Fungal Genetics and Biology, 2019, 123, 78-86.	0.9	12
9	Endocytic recycling via the TGN underlies the polarized hyphal mode of life. PLoS Genetics, 2018, 14, e1007291.	1.5	52
10	Genetic dissection of the secretory route followed by a fungal extracellular glycosyl hydrolase. Molecular Microbiology, 2018, 109, 781-800.	1.2	17
11	Molecular basis of resistance to the microtubule-depolymerizing antitumor compound plocabulin. Scientific Reports, 2018, 8, 8616.	1.6	9
12	Transport of fungal RAB11 secretory vesicles involves myosin-5, dynein/dynactin/p25, and kinesin-1 and is independent of kinesin-3. Molecular Biology of the Cell, 2017, 28, 947-961.	0.9	49
13	Cell Biology of Hyphal Growth. Microbiology Spectrum, 2017, 5, .	1.2	98
14	Triazolopyrimidines Are Microtubule-Stabilizing Agents that Bind the Vinca Inhibitor Site of Tubulin. Cell Chemical Biology, 2017, 24, 737-750.e6.	2.5	58
15	Genetic studies on the physiological role of CORVET in Aspergillus nidulans. FEMS Microbiology Letters, 2017, 364, .	0.7	6
16	<i>Aspergillus nidulans</i> BapH is a RAB11 effector that connects membranes in the <scp>S</scp> pitzenkörper with basal autophagy. Molecular Microbiology, 2017, 106, 452-468.	1.2	12
17	Probing the effect of tip pressure on fungal growth: Application to <i>Aspergillus nidulans</i> . Physical Review E, 2017, 96, 022402.	0.8	5
18	Mutational analysis of the <i>Aspergillus</i> ambient pH receptor PalH underscores its potential as a target for antifungal compounds. Molecular Microbiology, 2016, 101, 982-1002.	1.2	16

#	Article	IF	CITATIONS
19	The <scp><i>A</i></scp> <i>spergillus nidulans</i> syntaxin <scp>PepA^{Pep12}</scp> is regulated by two <scp>S</scp> ec1/ <scp>M</scp> uncâ€18 proteins to mediate fusion events at early endosomes, late endosomes and vacuoles. Molecular Microbiology, 2016, 99, 199-216.	1.2	17
20	Current challenges of research on filamentous fungi in relation to human welfare and a sustainable bio-economy: a white paper. Fungal Biology and Biotechnology, 2016, 3, 6.	2.5	208
21	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
22	A lipidâ€managing program maintains a stout <scp>S</scp> pitzenkörper. Molecular Microbiology, 2015, 97, 1-6.	1.2	12
23	Refining the <scp>pH</scp> response in <scp><i>A</i></scp> <i>spergillus nidulans</i> : a modulatory triad involving <scp>PacX</scp> , a novel zinc binuclear cluster protein. Molecular Microbiology, 2015, 98, 1051-1072.	1.2	14
24	Cytoplasmic dynein and early endosome transport. Cellular and Molecular Life Sciences, 2015, 72, 3267-3280.	2.4	40
25	TRAPPII regulates exocytic Golgi exit by mediating nucleotide exchange on the Ypt31 ortholog RabE ^{RAB11} . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4346-4351.	3.3	55
26	Aspergillus nidulans Ambient pH Signaling Does Not Require Endocytosis. Eukaryotic Cell, 2015, 14, 545-553.	3.4	21
27	Conditional inactivation of <scp><i>A</i></scp> <i>spergillus nidulans</i> â€ <scp><i>sarA^{SAR1}</i></scp> uncovers the morphogenetic potential of regulating endoplasmic reticulum (ER) exit. Molecular Microbiology, 2015, 95, 491-508.	1.2	24
28	Maturation of late Golgi cisternae into RabE ^{RAB11} exocytic post-Golgi carriers visualized in vivo. Molecular Biology of the Cell, 2014, 25, 2428-2443.	0.9	86
29	HookA is a novel dynein–early endosome linker critical for cargo movement in vivo. Journal of Cell Biology, 2014, 204, 1009-1026.	2.3	115
30	Liaison alcaline: Pals entice non-endosomal ESCRTs to the plasma membrane for pH signaling. Current Opinion in Microbiology, 2014, 22, 49-59.	2.3	60
31	Regulation of Gene Expression by Ambient pH. , 2014, , 480-487.		2
32	GBF/Gea mutant with a single substitution sustains fungal growth in the absence of BIG/Sec7. FEBS Letters, 2014, 588, 4799-4806.	1.3	19
33	An Isoprenylation and Palmitoylation Motif Promotes Intraluminal Vesicle Delivery of Proteins in Cells from Distant Species. PLoS ONE, 2014, 9, e107190.	1.1	14
34	New Interfacial Microtubule Inhibitors of Marine Origin, PM050489/PM060184, with Potent Antitumor Activity and a Distinct Mechanism. ACS Chemical Biology, 2013, 8, 2084-2094.	1.6	57
35	Acute inactivation of the <i><scp>A</scp>spergillus nidulans</i> â€ <scp>G</scp> olgi membrane fusion machinery: correlation of apical extension arrest and tip swelling with cisternal disorganization. Molecular Microbiology, 2013, 89, 228-248.	1.2	58
36	Live-cell imaging of <i><i>Aspergillus nidulans</i></i> autophagy. Autophagy, 2013, 9, 1024-1043.	4.3	50

Miguel Ängel Peñalva

#	Article	IF	CITATIONS
37	The Aspergillus nidulans Peripheral ER: Disorganization by ER Stress and Persistence during Mitosis. PLoS ONE, 2013, 8, e67154.	1.1	36
38	Searching for gold beyond mitosis. Cellular Logistics, 2012, 2, 2-14.	0.9	56
39	An ordered pathway for the assembly of ESCRT-containing fungal ambient pH signalling complexes at the plasma membrane. Journal of Cell Science, 2012, 125, 1784-95.	1.2	77
40	Endosomal maturation by Rab conversion in <i>Aspergillus nidulans</i> is coupled to dynein-mediated basipetal movement. Molecular Biology of the Cell, 2012, 23, 1889-1901.	0.9	58
41	<i>Aspergillus nidulans</i> CkiA is an essential casein kinase I required for delivery of amino acid transporters to the plasma membrane. Molecular Microbiology, 2012, 84, 530-549.	1.2	45
42	Adaptation of the Tokuyasu method for the ultrastructural study and immunogold labelling of filamentous fungi. Journal of Electron Microscopy, 2011, 60, 211-216.	0.9	10
43	Characterization of <i>Aspergillus nidulans</i> RabC/Rab6. Traffic, 2011, 12, 386-406.	1.3	56
44	Rescue of Aspergillus nidulans severely debilitating null mutations in ESCRT-0, I, II and III genes by inactivation of a salt-tolerance pathway allows examination of ESCRT gene roles in pH signalling. Journal of Cell Science, 2011, 124, 4064-4076.	1.2	48
45	The p25 subunit of the dynactin complex is required for dynein–early endosome interaction. Journal of Cell Biology, 2011, 193, 1245-1255.	2.3	75
46	<i>Aspergillus</i> RabB ^{Rab5} Integrates Acquisition of Degradative Identity with the Long Distance Movement of Early Endosomes. Molecular Biology of the Cell, 2010, 21, 2756-2769.	0.9	77
47	Endocytic Machinery Protein SlaB Is Dispensable for Polarity Establishment but Necessary for Polarity Maintenance in Hyphal Tip Cells of Aspergillus nidulans. Eukaryotic Cell, 2010, 9, 1504-1518.	3.4	83
48	The microtubule plus-end localization of <i>Aspergillus</i> dynein is important for dynein–early-endosome interaction but not for dynein ATPase activation. Journal of Cell Science, 2010, 123, 3596-3604.	1.2	71
49	Receptor-independent Ambient pH Signaling by Ubiquitin Attachment to Fungal Arrestin-like PalF. Journal of Biological Chemistry, 2010, 285, 18095-18102.	1.6	55
50	Endocytosis in filamentous fungi: Cinderella gets her reward. Current Opinion in Microbiology, 2010, 13, 684-692.	2.3	89
51	Characterization of Aspergillus nidulans DidBDid2, a non-essential component of the multivesicular body pathway. Fungal Genetics and Biology, 2010, 47, 636-646.	0.9	12
52	Analysis of a novel calcium auxotrophy in Aspergillus nidulans. Fungal Genetics and Biology, 2010, 47, 647-655.	0.9	33
53	AgtA, the Dicarboxylic Amino Acid Transporter of <i>Aspergillus nidulans</i> , Is Concertedly Down-Regulated by Exquisite Sensitivity to Nitrogen Metabolite Repression and Ammonium-Elicited Endocytosis. Eukaryotic Cell, 2009, 8, 339-352.	3.4	28
54	Physiological Involvement in pH Signaling of Vps24-mediated Recruitment of Aspergillus PalB Cysteine Protease to ESCRT-III. Journal of Biological Chemistry, 2009, 284, 4404-4412.	1.6	54

Miguel Ängel Peıalva

#	Article	IF	CITATIONS
55	Organization and Dynamics of the <i>Aspergillus nidulans</i> Golgi during Apical Extension and Mitosis. Molecular Biology of the Cell, 2009, 20, 4335-4347.	0.9	110
56	Longâ€Distance Movement of <i>Aspergillus nidulans </i> Early Endosomes on Microtubule Tracks. Traffic, 2009, 10, 57-75.	1.3	131
57	Preferential localization of the endocytic internalization machinery to hyphal tips underlies polarization of the actin cytoskeleton in <i>Aspergillus nidulans</i> . Molecular Microbiology, 2008, 67, 891-905.	1.2	140
58	Ambient pH gene regulation in fungi: making connections. Trends in Microbiology, 2008, 16, 291-300.	3.5	319
59	NapA and NapB are the Aspergillus nidulans Nap/SET family members and NapB is a nuclear protein specifically interacting with importin α. Fungal Genetics and Biology, 2008, 45, 278-291.	0.9	13
60	The Tip Growth Apparatus of <i>Aspergillus nidulans</i> . Molecular Biology of the Cell, 2008, 19, 1439-1449.	0.9	261
61	Ras GTPase-Activating Protein Regulation of Actin Cytoskeleton and Hyphal Polarity in <i>Aspergillus nidulans</i> . Eukaryotic Cell, 2008, 7, 141-153.	3.4	51
62	Further Characterization of the Signaling Proteolysis Step in the Aspergillus nidulans pH Signal Transduction Pathway. Eukaryotic Cell, 2007, 6, 960-970.	3.4	57
63	Establishment of the Ambient pH Signaling Complex in <i>Aspergillus nidulans</i> : Pall Assists Plasma Membrane Localization of PalH. Eukaryotic Cell, 2007, 6, 2365-2375.	3.4	85
64	Evidence for the Direct Involvement of the Proteasome in the Proteolytic Processing of the Aspergillus nidulans Zinc Finger Transcription Factor PacC. Journal of Biological Chemistry, 2007, 282, 34735-34747.	1.6	78
65	PalC, One of Two Bro1 Domain Proteins in the Fungal pH Signalling Pathway, Localizes to Cortical Structures and Binds Vps32. Traffic, 2007, 8, 1346-1364.	1.3	64
66	Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 2005, 438, 1151-1156.	13.7	1,272
67	Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature, 2005, 438, 1105-1115.	13.7	1,250
68	Mutational Analysis of the pH Signal Transduction Component PalC of Aspergillus nidulans Supports Distant Similarity to BRO1 Domain Family Members. Genetics, 2005, 171, 393-401.	1.2	28
69	Arrestin-related proteins mediate pH signaling in fungi. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12141-12146.	3.3	144
70	Tracing the endocytic pathway of Aspergillus nidulans with FM4-64. Fungal Genetics and Biology, 2005, 42, 963-975.	0.9	194
71	Fungal Metabolic Model for 3-Methylcrotonyl-CoA Carboxylase Deficiency. Journal of Biological Chemistry, 2004, 279, 4578-4587.	1.6	34
72	Fungal Metabolic Model for Type I 3-Methylglutaconic Aciduria. Journal of Biological Chemistry, 2004, 279, 32385-32392.	1.6	10

Miguel Ängel Peñalva

#	Article	IF	CITATIONS
73	Recent Advances in the Characterization of Ambient pH Regulation of Gene Expression in Filamentous Fungi and Yeasts. Annual Review of Microbiology, 2004, 58, 425-451.	2.9	174
74	pH regulation in Aspergillus and parallels with higher eukaryotic regulatory systems. Trends in Genetics, 2003, 19, 224-231.	2.9	112
75	Overlap of Nuclear Localisation Signal and Specific DNA-binding Residues Within the Zinc Finger Domain of PacC. Journal of Molecular Biology, 2003, 334, 667-684.	2.0	71
76	Recognizing gene regulation by ambient pH. Fungal Genetics and Biology, 2003, 40, 1-3.	0.9	15
77	Functional analysis of MCCA and MCCB mutations causing methylcrotonylglycinuria. Molecular Genetics and Metabolism, 2003, 80, 315-320.	0.5	20
78	YPXL/I Is a Protein Interaction Motif Recognized by Aspergillus PalA and Its Human Homologue, AIP1/Alix. Molecular and Cellular Biology, 2003, 23, 1647-1655.	1.1	148
79	Regulation of Gene Expression by Ambient pH in Filamentous Fungi and Yeasts. Microbiology and Molecular Biology Reviews, 2002, 66, 426-446.	2.9	258
80	Activation of theAspergillusPacC zinc finger transcription factor requires two proteolytic steps. EMBO Journal, 2002, 21, 1350-1359.	3.5	120
81	A Fungal Perspective on Human Inborn Errors of Metabolism: Alkaptonuria and Beyond. Fungal Genetics and Biology, 2001, 34, 1-10.	0.9	21
82	The Molecular Basis of 3-Methylcrotonylglycinuria, a Disorder of Leucine Catabolism. American Journal of Human Genetics, 2001, 68, 334-346.	2.6	73
83	Putative membrane components of signal transduction pathways for ambient pH regulation in Aspergillus and meiosis in Saccharomyces are homologous Molecular Microbiology, 2001, 39, 211-211.	1.2	2
84	Ambient pH Signaling Regulates Nuclear Localization of the Aspergillus nidulans PacC Transcription Factor. Molecular and Cellular Biology, 2001, 21, 1688-1699.	1.1	82
85	Reduced Function of a Phenylacetate-Oxidizing Cytochrome P450 Caused Strong Genetic Improvement in Early Phylogeny of Penicillin-Producing Strains. Journal of Bacteriology, 2001, 183, 5465-5471.	1.0	65
86	Crystal structure of human homogentisate dioxygenase. Nature Structural Biology, 2000, 7, 542-546.	9.7	137
87	On how a transcription factor can avoid its proteolytic activation in the absence of signal transduction. EMBO Journal, 2000, 19, 2391-2391.	3.5	1
88	On how a transcription factor can avoid its proteolytic activation in the absence of signal transduction. EMBO Journal, 2000, 19, 719-728.	3.5	59
89	Structural and functional analysis of mutations in alkaptonuria. Human Molecular Genetics, 2000, 9, 2341-2350.	1.4	80
90	Disruption of phacA, an Aspergillus nidulans Gene Encoding a Novel Cytochrome P450 Monooxygenase Catalyzing Phenylacetate 2-Hydroxylation, Results in Penicillin Overproduction. Journal of Biological Chemistry, 1999, 274, 14545-14550.	1.6	72

Miguel Ängel Peñalva

#	Article	IF	CITATIONS
91	Ambient pH signal transduction in Aspergillus: completion of gene characterization. Molecular Microbiology, 1999, 33, 994-1003.	1.2	92
92	Ambient pH signal transduction in Aspergillus: completion of gene characterization. Molecular Microbiology, 1999, 34, 1149-1149.	1.2	0
93	Specificity Determinants of Proteolytic Processing of <i>Aspergillus</i> PacC Transcription Factor Are Remote from the Processing Site, and Processing Occurs in Yeast If pH Signalling Is Bypassed. Molecular and Cellular Biology, 1999, 19, 1390-1400.	1.1	68
94	The optimization of penicillin biosynthesis in fungi. Trends in Biotechnology, 1998, 16, 483-489.	4.9	75
95	Putative membrane components of signal transduction pathways for ambient pH regulation inAspergillusand meiosis inSaccharomycesare homologous. Molecular Microbiology, 1998, 30, 259-264.	1.2	66
96	Mutation and Polymorphism Analysis of the Human Homogentisate 1,2-Dioxygenase Gene in Alkaptonuria Patients. American Journal of Human Genetics, 1998, 62, 776-784.	2.6	79
97	The EssentialAspergillus nidulansGenepmaAEncodes an Homologue of Fungal Plasma Membrane H+-ATPases. Fungal Genetics and Biology, 1998, 23, 288-299.	0.9	14
98	Characterization of a Fungal Maleylacetoacetate Isomerase Gene and Identification of Its Human Homologue. Journal of Biological Chemistry, 1998, 273, 329-337.	1.6	158
99	The Human Homogentisate 1,2-Dioxygenase (HGO) Gene. Genomics, 1997, 43, 115-122.	1.3	78
100	Specific DNA recognition by the Aspergillus nidulans three zinc finger transcription factor PacC. Journal of Molecular Biology, 1997, 274, 466-480.	2.0	107
101	Spectrophotometric Determination of Homogentisate UsingAspergillus nidulansHomogentisate Dioxygenase. Analytical Biochemistry, 1997, 245, 218-221.	1.1	30
102	Characterization of a Penicillium chrysogenum gene encoding a PacC transcription factor and its binding sites in the divergent pcbAB–pcbC promoter of the penicillin biosynthetic cluster. Molecular Microbiology, 1996, 20, 529-540.	1.2	126
103	The molecular basis of alkaptonuria. Nature Genetics, 1996, 14, 19-24.	9.4	283
104	Three Binding Sites for the Aspergillus nidulans PacC Zinc-finger Transcription Factor Are Necessary and Sufficient for Regulation by Ambient pH of the Isopenicillin N Synthase Gene Promoter. Journal of Biological Chemistry, 1996, 271, 28825-28830.	1.6	104
105	Fungal metabolic model for human type I hereditary tyrosinaemia Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9132-9136.	3.3	57
106	Overexpression of two penicillin structural genes in Aspergillus nidulans. Molecular Genetics and Genomics, 1995, 246, 110-118.	2.4	47
107	The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH EMBO Journal, 1995, 14, 779-790.	3.5	550
108	A lacZ reporter fusion method for the genetic analysis of regulatory mutations in pathways of fungal secondary metabolism and its application to the Aspergillus nidulans penicillin pathway. Journal of Bacteriology, 1995, 177, 6069-6076.	1.0	27

#	Article	IF	CITATIONS
109	Molecular Characterization of a Gene Encoding a Homogentisate Dioxygenase from Aspergillus nidulans and Identification of Its Human and Plant Homologues. Journal of Biological Chemistry, 1995, 270, 21199-21205.	1.6	115
110	Activation of the Aspergillus PacC transcription factor in response to alkaline ambient pH requires proteolysis of the carboxy-terminal moiety Genes and Development, 1995, 9, 1622-1632.	2.7	186
111	Carbon regulation of penicillin biosynthesis in Aspergillus nidulans: a minor effect of mutations in creB and creC. FEMS Microbiology Letters, 1995, 126, 63-7.	0.7	12
112	In vitro binding of the two-finger repressor CreA to several consensus and non-consensus sites at theipnAupstream region is context dependent. FEBS Letters, 1994, 342, 43-48.	1.3	50
113	Expression of fungal genes involved in penicllin biosynthesis. World Journal of Microbiology and Biotechnology, 1993, 9, 461-467.	1.7	1
114	Molecular characterization of a fungal secondary metabolism promoter: transcription of the Aspergillus nidulans isopenicillin N synthetase gene is modulated by upstream negative elements. Molecular Microbiology, 1993, 9, 881-895.	1.2	71
115	Characterisation of the gene encoding acetyl-CoA synthetase in Penicillium chrysogenum: conservation of intron position in plectomycetes. Gene, 1993, 130, 265-270.	1.0	25
116	pH regulation is a major determinant in expression of a fungal penicillin biosynthetic gene EMBO Journal, 1993, 12, 3947-3956.	3.5	168
117	Carbon catabolite repression can account for the temporal pattern of expression of a penicillin biosynthetic gene in Aspergillus nidulans. Molecular Microbiology, 1992, 6, 1457-1465.	1.2	100
118	Molecular cloning of the uaY regulatory gene of Aspergillus nidulans reveals a favoured region for DNA insertions. Molecular Genetics and Genomics, 1991, 230, 369-375.	2.4	32
119	Cloning of the PYR4 gene encoding orotidine-5?-phosphate decarboxylase in Cephalosporium acremonium. Current Genetics, 1990, 17, 223-227.	0.8	9
120	The upstream region of the IPNS gene determines expression during secondary metabolism in Aspergillus nidulans. Gene, 1990, 89, 109-115.	1.0	24
121	Sequences of isopenicillin N synthetase genes suggest horizontal gene transfer from prokaryotes to eukaryotes. Proceedings of the Royal Society B: Biological Sciences, 1990, 241, 164-169.	1.2	58
122	The complete nucleotide sequence of thetrpC gene fromPenicillium chrysogenum. Nucleic Acids Research, 1987, 15, 1874-1874.	6.5	11
123	Transformation in Penicillium chrysogenum. Gene, 1987, 51, 97-102.	1.0	43
124	Cloning and characterization of the isopenicillin N synthetase gene mediating the formation of the β-lactam ring in Aspergillus nidulans. Gene, 1987, 57, 171-181.	1.0	134
125	Structure of a Cephalosporium acremonium mtDNA replicator. FEBS Letters, 1986, 198, 92-98.	1.3	5
126	Secretion of mature human interferon alpha 2 into the periplasmic space of Escherichia coli. Journal of Biotechnology, 1986, 4, 255-267.	1.9	10

Miguel Ängel Peıalva

#	Article	IF	CITATIONS
127	The subunit I of the respiratory-chain NADH dehydrogenase from Cephalosporium acremonium: the evolution of a mitochondrial gene. Current Genetics, 1986, 10, 797-801.	0.8	8
128	Molecular cloning and characterization of the trpC gene from Penicillium chrysogenum. Molecular Genetics and Genomics, 1986, 205, 248-252.	2.4	11
129	Template requirements for initiation of phage phi 29 DNA replication in vitro Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 80-84.	3.3	35
130	Factors involved in the initiation of phage o29 DNA replication in vitro: requirement of the gene 2 product for the formation of the protein p3-dAMP complex. Nucleic Acids Research, 1983, 11, 1309-1323.	6.5	33
131	Initiation of phage phi 29 DNA replication in vitro: formation of a covalent complex between the terminal protein, p3, and 5'-dAMP Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 5522-5526.	3.3	172
132	Structure of protein-containing replicative intermediates of Bacillus subtilis phage φ29 DNA. Virology, 1982, 116, 1-18.	1.1	47
133	PRIMING OF PHAGE Ã~29 REPLICATION BY PROTEIN p3, COVALENTLY LINKED TO THE 5â€2 ENDS OF THE DNA1. , 1981, , 437-453.		0
134	The protein covalently linked to the 5′ termini of the DNA of Bacillus subtilis phage Î,29 is involved in the initiation of DNA replication. Virology, 1980, 104, 84-96.	1.1	119
135	Cell Biology of Hyphal Growth. , 0, , 231-265.		15