89 2,789 28 51

papers citations h-index g-index

90 3,109 0.8 5.49

ext. papers ext. citations avg, IF L-index



88

86

8o

74

GRIGORE Ro@

Paper IF Citations

The (mathbb {K}) Vision for the Future of Programming Language Design and Analysis. Lecture
Notes in Computer Science, 2021, 3-9

Towards a Trustworthy Semantics-Based Language Framework via Proof Generation. Lecture Notes o
in Computer Science, 2021, 477-499 9 5

A general approach to define binders using matching logic 2020, 4, 1-32

(mathbb {K})A Semantic Framework for Programming Languages and Formal Analysis. Lecture
Notes in Computer Science, 2020, 122-158

A complete formal semantics of x86-64 user-level instruction set architecture 2019, 17

IELE: A Rigorously Designed Language and Tool Ecosystem for the Blockchain. Lecture Notes in
Computer Science, 2019, 593-610

How effective are existing Java API specifications for finding bugs during runtime verification?.
Automated Software Engineering, 2019, 26, 795-837

KEVM: A Complete Formal Semantics of the Ethereum Virtual Machine 2018,

Program Verification by Coinduction. Lecture Notes in Computer Science, 2018, 589-618 09 4

Runtime Verification - 17 Years Later. Lecture Notes in Computer Science, 2018, 3-17

A Language-Independent Approach to Smart Contract Verification. Lecture Notes in Computer
Science, 2018, 405-413 09 5

Finite-trace linear temporal logic: coinductive completeness. Formal Methods in System Design,
2018, 53, 138-163

Language definitions as rewrite theories. Journal of Logical and Algebraic Methods in Programming,
2016, 85, 98-120 o7

Semantics-based program verifiers for all languages 2016,

Semantics-based program verifiers for all languages. ACM SIGPLAN Notices, 2016, 51, 74-91 02 12

Finite-Trace Linear Temporal Logic: Coinductive Completeness. Lecture Notes in Computer Science,

2016, 333-350




(2014-2016)

72 Towards a (mathbb {K})ool Future. Lecture Notes in Computer Science, 2016, 325-343 0.9

How good are the specs? a study of the bug-finding effectiveness of existing Java API
specifications 2016,

70  RV-Match: Practical Semantics-Based Program Analysis. Lecture Notes in Computer Science, 2016, 447-453.9 8

Defining the undefinedness of C 2015,

68 Term-generic logic. Theoretical Computer Science, 2015, 577, 1-24 11 6

From Rewriting Logic, to Programming Language Semantics, to Program Verification. Lecture Notes o
in Computer Science, 2015, 598-616 9

66 KJS: a complete formal semantics of JavaScript 2015, 51

K-Java 2015,

64 Evolution-Aware Monitoring-Oriented Programming 2015, 5

GPredict: Generic Predictive Concurrency Analysis 2015,

62 Defining the undefinedness of C. ACM SIGPLAN Notices, 2015, 50, 336-345 02 17

KJS: a complete formal semantics of JavaScript. ACM SIGPLAN Notices, 2015, 50, 346-356

A Theoretical Foundation for Programming Languages Aggregation. Lecture Notes in Computer

60 Science, 2015, 30-47 0.9

Abstract Semantics for . Electronic Notes in Theoretical Computer Science, 2014, 304, 127-149

58 The . Electronic Notes in Theoretical Computer Science, 2014, 304, 57-80 oy 6

K Overview and SIMPLE Case Study. Electronic Notes in Theoretical Computer Science, 2014, 304, 3-56

56  All-Path Reachability Logic. Lecture Notes in Computer Science, 2014, 425-440 09 29

RV-Monitor: Efficient Parametric Runtime Verification with Simultaneous Properties. Lecture Notes

in Computer Science, 2014, 285-300




GRIGORE Ro@

54 Language Definitions as Rewrite Theories. Lecture Notes in Computer Science, 2014, 97-112 09 4

The rewriting logic semantics project: A progress report. /nformation and Computation, 2013, 231, 38-69 0.8

52 Efficient parametric runtime verification with deterministic string rewriting 2013, 6

One-Path Reachability Logic 2013,

50 Introduction to the special issue on runtime verification. Formal Methods in System Design, 2012, 41, 233235 2

An overview of the MOP runtime verification framework. International Journal on Software Tools
for Technology Transfer, 2012, 14, 249-289

48 Checking reachability using matching logic 2012, 20

JavaMOP: Efficient parametric runtime monitoring framework 2012,

46 Anexecutable formal semantics of C with applications. ACM SIGPLAN Notices, 2012, 47, 533-544 02 33

Checking reachability using matching logic. ACM SIGPLAN Notices, 2012, 47, 555-574

Towards a Unified Theory of Operational and Axiomatic Semantics. Lecture Notes in Computer

44 Science, 2012, 351-363 09 11

Executing Formal Semantics with the (mathbb K) Tool. Lecture Notes in Computer Science, 2012, 267-2710.9

42 From Hoare Logic to Matching Logic Reachability. Lecture Notes in Computer Science, 2012, 387-402 09 11

A Truly Concurrent Semantics for the (mathbb{K}) Framework Based on Graph Transformations.
Lecture Notes in Computer Science, 2012, 294-310

40  (mathbb{K}) Framework Distilled. Lecture Notes in Computer Science, 2012, 31-53 09 10

Making Maude Definitions More Interactive. Lecture Notes in Computer Science, 2012, 83-98

38  Mining parametric specifications 2011, 39

Matching logic 2011,




(2005-2011)

36 Garbage collection for monitoring parametric properties. ACM SIGPLAN Notices, 2011, 46, 415-424 02 7

Matching Logic: An Alternative to Hoare/Floyd Logic. Lecture Notes in Computer Science, 2011, 142-162 0.9

34 The Rewriting Logic Semantics Project: A Progress Report. Lecture Notes in Computer Science, 2011,1-3709 9

K-Maude: A Rewriting Based Tool for Semantics of Programming Languages. Lecture Notes in
Computer Science, 2010, 104-122

An overview of the K semantic framework. The Journal of Logic and Algebraic Programming, 2010,
32 79,397-434 227

A rewriting logic approach to operational semantics. /nformation and Computation, 2009, 207, 305-340 0.8

30 Hardware Runtime Monitoring for Dependable COTS-Based Real-Time Embedded Systems 2008, 46

Efficient Monitoring of Parametric Context-Free Patterns 2008,

An instrumentation technique for online analysis of multithreaded programs. Concurrency

28 Computation Practice and Experience, 2007, 19, 311-325 4 3

A Rewrite Framework for Language Definitions and for Generation of Efficient Interpreters.
Electronic Notes in Theoretical Computer Science, 2007, 176, 215-231

26 The rewriting logic semantics project. Theoretical Computer Science, 2007, 373, 213-237 11 87

Mop. ACM SIGPLAN Notices, 2007, 42, 569-588

, Checking and Correcting Behaviors of Java Programs at Runtime with Java-MOP. Electronic Notes in o
4 Theoretical Computer Science, 2006, 144, 3-20 7

Online efficient predictive safety analysis of multithreaded programs. International Journal on
Software Tools for Technology Transfer, 2006, 8, 248-260

Detecting Errors in Multithreaded Programs by Generalized Predictive Analysis of Executions.

22 Lecture Notes in Computer Science, 2005, 211-226 09 39

Rewriting-Based Techniques for Runtime Verification. Automated Software Engineering, 2005, 12, 151-19{/5

20  Efficient Monitoring of ELanguages. Lecture Notes in Computer Science, 2005, 364-378 09 63

Java-MOP: A Monitoring Oriented Programming Environment for Java. Lecture Notes in Computer

Science, 2005, 546-550 0.9




GRIGORE Ro@

Online Efficient Predictive Safety Analysis of Multithreaded Programs. Lecture Notes in Computer

18 Stience, 2004, 123-138 @y i

An Overview of the Runtime Verification Tool Java PathExplorer. Formal Methods in System Design,
2004, 24, 189-215

Efficient monitoring of safety properties. International Journal on Software Tools for Technology

16 ransfer. 2004, 6, 158-173 13 106

Behavioral abstraction is hiding information. Theoretical Computer Science, 2004, 327, 197-221

1 Composing Hidden Information Modules over Inclusive Institutions. Lecture Notes in Computer o ,
4 Science, 2004, 96-123 9 4

Generating Optimal Monitors for Extended Regular Expressions. Electronic Notes in Theoretical
Computer Science, 2003, 89, 226-245

Towards Monitoring-Oriented Programming: A Paradigm Combining Specification and

12 Implementation. Electronic Notes in Theoretical Computer Science, 2003, 89, 108-127 °7 53

Experiments with Test Case Generation and Runtime Analysis. Lecture Notes in Computer Science,
2003, 87-108

Generating Optimal Linear Temporal Logic Monitors by Coinduction. Lecture Notes in Computer

10 science, 2003, 260-275 09 12

Certifying and Synthesizing Membership Equational Proofs. Lecture Notes in Computer Science,
2003, 359-380

Testing Extended Regular Language Membership Incrementally by Rewriting. Lecture Notes in o L
Computer Science, 2003, 499-514 9 5

Synthesizing Monitors for Safety Properties. Lecture Notes in Computer Science, 2002, 342-356

6 Institution Morphisms. Formal Aspects of Computing, 2002, 13, 274-307 1.2 118

Towards Behavioral Maude: Behavioral Membership Equational Logic. Electronic Notes in
Theoretical Computer Science, 2002, 65, 197-253

Axiomatizability in inclusive equational logics. Mathematical Structures in Computer Science, 2002,
4 12,541-563 °5 9

Monitoring Java Programs with Java PathExplorer. Electronic Notes in Theoretical Computer Science,
2001, 55, 200-217

2 Hiding more of hidden algebra. Lecture Notes in Computer Science, 1999, 1704-1719 0.9 25

Weak inclusion systems. Mathematical Structures in Computer Science, 1997, 7, 195-206




LIST OF PUBLICATIONS




