Arnulf Mayer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3880808/publications.pdf

Version: 2024-02-01

257357 155592 5,183 62 24 55 h-index citations g-index papers 62 62 62 7258 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Strahlentherapie., 2022,, 27-34.		O
2	Adjuvant chemoradiotherapy in elderly patients with head and neck cancer: aÂmonoinstitutional, two-to-one pair-matching analysis. Strahlentherapie Und Onkologie, 2022, 198, 159-170.	1.0	10
3	Oxygen Deprivation Modulates EGFR and PD-L1 in Squamous Cell Carcinomas of the Head and Neck. Frontiers in Oncology, 2021, 11, 623964.	1.3	4
4	Using the R Package Spatstat to Assess Inhibitory Effects of Microregional Hypoxia on the Infiltration of Cancers of the Head and Neck Region by Cytotoxic T Lymphocytes. Cancers, 2021, 13, 1924.	1.7	5
5	Comparative Analyses of Two Established Scores to Assess the Stability of Spinal Bone Metastases Before and After Palliative Radiotherapy. Frontiers in Oncology, 2021, 11, 753768.	1.3	1
6	The Role of Palliative Radiotherapy in the Treatment of Spinal Bone Metastases from Head and Neck Tumors—A Multicenter Analysis of a Rare Event. Cancers, 2020, 12, 1950.	1.7	3
7	High-dose carbon-ion based radiotherapy of primary and recurrent sacrococcygeal chordomas: long-term clinical results of a single particle therapy center. Radiation Oncology, 2020, 15, 206.	1.2	10
8	Role of Hypoxia and the Adenosine System in Immune Evasion and Prognosis of Patients with Brain Metastases of Melanoma: A Multiplex Whole Slide Immunofluorescence Study. Cancers, 2020, 12, 3753.	1.7	11
9	Stability and survival analysis of elderly patients with osteolytic spinal bone metastases after palliative radiotherapy. Strahlentherapie Und Onkologie, 2019, 195, 1074-1085.	1.0	10
10	The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. International Journal of Radiation Biology, 2019, 95, 912-919.	1.0	495
11	Repression of Human Papillomavirus Oncogene Expression under Hypoxia Is Mediated by PI3K/mTORC2/AKT Signaling. MBio, 2019, 10, .	1.8	32
12	Long-term survival of patients after ipilimumab and hypofractionated brain radiotherapy for brain metastases of malignant melanoma: sequence matters. Strahlentherapie Und Onkologie, 2018, 194, 1144-1151.	1.0	29
13	Induction of dormancy in hypoxic human papillomavirus-positive cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E990-E998.	3.3	49
14	Multikinase inhibitors sorafenib and sunitinib as radiosensitizers in head and neck cancer cell lines. Head and Neck, 2017, 39, 623-632.	0.9	14
15	Patterns of failure of diffuse large B‑cell lymphoma patients after involved-site radiotherapy. Strahlentherapie Und Onkologie, 2017, 193, 1014-1023.	1.0	3
16	Inclusion of PET-CT into planning of primary or neoadjuvant chemoradiotherapy of esophageal cancer improves prognosis. Strahlentherapie Und Onkologie, 2017, 193, 791-799.	1.0	19
17	Multiparametric Analysis of the Tumor Microenvironment: Hypoxia Markers and Beyond. Advances in Experimental Medicine and Biology, 2017, 977, 101-107.	0.8	2
18	Tumor Oxygenation Status: Facts and Fallacies. Advances in Experimental Medicine and Biology, 2017, 977, 91-99.	0.8	17

#	Article	IF	CITATIONS
19	Oxygenation of Tumors. , 2017, , 3342-3346.		1
20	Personalized therapy: CNS HGNET-BCOR responsiveness to arsenic trioxide combined with radiotherapy. Oncotarget, 2017, 8, 114210-114225.	0.8	25
21	Stability, Prognostic Factors and Survival of Spinal Bone Metastases in Malignant Melanoma Patients after Palliative Radiotherapy. Tumori, 2016, 102, 156-161.	0.6	27
22	Tumor Hypoxia: Causative Mechanisms, Microregional Heterogeneities, and the Role of Tissue-Based Hypoxia Markers. Advances in Experimental Medicine and Biology, 2016, 923, 77-86.	0.8	31
23	Downregulation of EGFR in hypoxic, diffusion-limited areas of squamous cell carcinomas of the head and neck. British Journal of Cancer, 2016, 115, 1351-1358.	2.9	16
24	Hypoxia-Driven Adenosine Accumulation: A Crucial Microenvironmental Factor Promoting Tumor Progression. Advances in Experimental Medicine and Biology, 2016, 876, 177-183.	0.8	62
25	Hypoxia-Associated Marker CA IX Does Not Predict the Response of Locally Advanced Rectal Cancers to Neoadjuvant Chemoradiotherapy. Advances in Experimental Medicine and Biology, 2016, 876, 195-200.	0.8	0
26	Radiotherapy with BRAF inhibitor therapy for melanoma: progress and possibilities. Future Oncology, 2016, 12, 95-106.	1.1	15
27	Response to commentary by Champ and Klement. Strahlentherapie Und Onkologie, 2015, 191, 283-284.	1.0	1
28	Adjuvant temozolomide-based chemoradiotherapy versus radiotherapy alone in patients with WHOÂIII astrocytoma. Strahlentherapie Und Onkologie, 2015, 191, 665-671.	1.0	5
29	The Clinical Importance of Assessing Tumor Hypoxia: Relationship of Tumor Hypoxia to Prognosis and Therapeutic Opportunities. Antioxidants and Redox Signaling, 2015, 22, 878-880.	2.5	18
30	Can respiratory hyperoxia mitigate adenosine-driven suppression of antitumor immunity?. Annals of Translational Medicine, 2015, 3, 292.	0.7	5
31	GLUT-1 expression is largely unrelated to both hypoxia and the Warburg phenotype in squamous cell carcinomas of the vulva. BMC Cancer, 2014, 14, 760.	1.1	19
32	Hypoxia in Tumors: Pathogenesis-Related Classification, Characterization of Hypoxia Subtypes, and Associated Biological and Clinical Implications. Advances in Experimental Medicine and Biology, 2014, 812, 19-24.	0.8	108
33	Strong adverse prognostic impact of hyperglycemic episodes during adjuvant chemoradiotherapy of glioblastoma multiforme. Strahlentherapie Und Onkologie, 2014, 190, 933-938.	1.0	59
34	Imaging tumor hypoxia: Blood-borne delivery of imaging agents is fundamentally different in hypoxia subtypes. Journal of Innovative Optical Health Sciences, 2014, 07, 1330005.	0.5	3
35	Oxygenation of Tumors. , 2014, , 1-6.		0
36	Hypoxia, Lactate Accumulation, and Acidosis: Siblings or Accomplices Driving Tumor Progression and Resistance to Therapy?. Advances in Experimental Medicine and Biology, 2013, 789, 203-209.	0.8	54

#	Article	IF	Citations
37	Lacking hypoxia-mediated downregulation of E-cadherin in cancers of the uterine cervix. British Journal of Cancer, 2013, 108, 402-408.	2.9	15
38	Differential expression of HIF-1 in glioblastoma multiforme and anaplastic astrocytoma. International Journal of Oncology, 2012, 41, 1260-1270.	1.4	45
39	Availability, not respiratory capacity governs oxygen consumption of solid tumors. International Journal of Biochemistry and Cell Biology, 2012, 44, 1477-1481.	1.2	48
40	Oxygenation Status of Urogenital Tumors. Advances in Experimental Medicine and Biology, 2011, 701, 101-106.	0.8	3
41	Evidence against a Major Role for TKTL-1 in Hypoxic and Normoxic Cancer Cells. Advances in Experimental Medicine and Biology, 2011, 701, 123-128.	0.8	6
42	GLUT-1 staining of squamous cell carcinomas of the uterine cervix identifies a novel element of invasion. International Journal of Oncology, 2011, 38, 145-50.	3.9	4
43	Glucose metabolism of malignant cells is not regulated by transketolase-like (TKTL)-1. International Journal of Oncology, 2010, 37, 265-71.	1.4	12
44	HIF-Mediated Hypoxic Response is Missing in Severely Hypoxic Uterine Leiomyomas. Advances in Experimental Medicine and Biology, 2010, 662, 399-405.	0.8	21
45	Solid tumours arising from differently pre-oxygenated cells: Comparable growth rates despite dissimilar tissue oxygenation. International Journal of Radiation Biology, 2009, 85, 981-988.	1.0	1
46	Lack of Hypoxic Response in Uterine Leiomyomas despite Severe Tissue Hypoxia. Cancer Research, 2008, 68, 4719-4726.	0.4	85
47	Endogenous Hypoxia Markers: Case Not Proven!. , 2008, 614, 127-136.		35
48	Relationship between hemoglobin levels and tumor oxygenation., 2008,, 265-282.		2
49	Detection and Characterization of Tumor Hypoxia Using pO2 Histography. Antioxidants and Redox Signaling, 2007, 9, 1221-1236.	2.5	628
50	Hypoxia in cancer: significance and impact on clinical outcome. Cancer and Metastasis Reviews, 2007, 26, 225-239.	2.7	1,918
51	Endogenous Hypoxia Markers in Locally Advanced Cancers of the Uterine Cervix: Reality or Wishful Thinking?. Strahlentherapie Und Onkologie, 2006, 182, 501-510.	1.0	37
52	Impact of Hemoglobin Levels on Tumor Oxygenation: the Higher, the Better?. Strahlentherapie Und Onkologie, 2006, 182, 63-71.	1.0	120
53	Microregional Expression of Glucose Transporter-1 and Oxygenation Status: Lack of Correlation in Locally Advanced Cervical Cancers. Clinical Cancer Research, 2005, 11, 2768-2773.	3.2	69
54	Carbonic Anhydrase IX Expression and Tumor Oxygenation Status Do Not Correlate at the Microregional Level in Locally Advanced Cancers of the Uterine Cervix. Clinical Cancer Research, 2005, 11, 7220-7225.	3.2	69

#	Article	IF	CITATIONS
55	Hypoxia in Breast Cancer. , 2005, 566, 333-342.		71
56	Hypoxia and anemia: effects on tumor biology and treatment resistance. Transfusion Clinique Et Biologique, 2005, 12, 5-10.	0.2	128
57	Tumor Hypoxia and Malignant Progression. Methods in Enzymology, 2004, 381, 335-354.	0.4	399
58	Lack of Correlation between Expression of HIF- $1\hat{l}\pm$ Protein and Oxygenation Status in Identical Tissue Areas of Squamous Cell Carcinomas of the Uterine Cervix. Cancer Research, 2004, 64, 5876-5881.	0.4	88
59	Erythropoietin to treat anaemia in patients with head and neck cancer. Lancet, The, 2004, 363, 992.	6.3	22
60	Impact of oxygenation status and patient age on DNA content in cancers of the uterine cervix. International Journal of Radiation Oncology Biology Physics, 2003, 56, 929-936.	0.4	4
61	Oxygenation gain factor: a novel parameter characterizing the association between hemoglobin level and the oxygenation status of breast cancers. Cancer Research, 2003, 63, 7634-7.	0.4	73
62	Oxygenation Status of Gynecologic Tumors: What is the Optimal Hemoglobin Level?. Strahlentherapie Und Onkologie, 2002, 178, 727-731.	1.0	117