Chiu-Yue Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3880465/publications.pdf Version: 2024-02-01

CHILL-YUE LIN

#	Article	IF	CITATIONS
1	An overview of food waste management in developing countries: Current status and future perspective. Journal of Environmental Management, 2015, 157, 220-229.	3.8	366
2	Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. International Journal of Hydrogen Energy, 2004, 29, 41-45.	3.8	318
3	Acid–base enrichment enhances anaerobic hydrogen production process. Applied Microbiology and Biotechnology, 2002, 58, 224-228.	1.7	284
4	Fermentative hydrogen production from wastewaters: A review and prognosis. International Journal of Hydrogen Energy, 2012, 37, 15632-15642.	3.8	259
5	A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora. International Journal of Hydrogen Energy, 2005, 30, 285-292.	3.8	231
6	Hydrogen production during the anaerobic acidogenic conversion of glucose. Journal of Chemical Technology and Biotechnology, 1999, 74, 498-500.	1.6	227
7	Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora. International Journal of Hydrogen Energy, 2004, 29, 275-281.	3.8	194
8	Recent insights into the cell immobilization technology applied for dark fermentative hydrogen production. Bioresource Technology, 2016, 219, 725-737.	4.8	161
9	Fermentative hydrogen production from xylose using anaerobic mixed microflora. International Journal of Hydrogen Energy, 2006, 31, 832-840.	3.8	152
10	Exploring optimal environmental factors for fermentative hydrogen production from starch using mixed anaerobic microflora. International Journal of Hydrogen Energy, 2008, 33, 1565-1572.	3.8	150
11	Biomass based hydrogen production by dark fermentation — recent trends and opportunities for greener processes. Current Opinion in Biotechnology, 2018, 50, 136-145.	3.3	117
12	Effect of heavy metals on acidogenesis in anaerobic digestion. Water Research, 1993, 27, 147-152.	5.3	113
13	Biohydrogen production by dark fermentation: scaling-up and technologies integration for a sustainable system. Reviews in Environmental Science and Biotechnology, 2015, 14, 761-785.	3.9	106
14	Biohydrogen and biomethane from water hyacinth (Eichhornia crassipes) fermentation: Effects of substrate concentration and incubation temperature. International Journal of Hydrogen Energy, 2011, 36, 14195-14203.	3.8	105
15	Effect of heavy metals on volatile fatty acid degradation in anaerobic digestion. Water Research, 1992, 26, 177-183.	5.3	103
16	Hydrogen production from sucrose using an anaerobic sequencing batch reactor process. Journal of Chemical Technology and Biotechnology, 2003, 78, 678-684.	1.6	100
17	Effects of initial cultivation pH on fermentative hydrogen production from xylose using natural mixed cultures. Process Biochemistry, 2006, 41, 1383-1390.	1.8	98
18	Biohydrogen production from soluble condensed molasses fermentation using anaerobic fermentation. International Journal of Hydrogen Energy, 2010, 35, 13445-13451.	3.8	97

Сніи-Yue Lin

#	Article	lF	CITATIONS
19	Heavy metal effects on fermentative hydrogen production using natural mixed microflora. International Journal of Hydrogen Energy, 2008, 33, 587-593.	3.8	91
20	A pilot-scale high-rate biohydrogen production system with mixed microflora. International Journal of Hydrogen Energy, 2011, 36, 8758-8764.	3.8	90
21	High-rate fermentative hydrogen production from beverage wastewater. Applied Energy, 2015, 147, 1-9.	5.1	89
22	Electrochemical Treatment of Heavy Metal-containing Wastewater with the Removal of COD and Heavy Metal Ions. Journal of the Chinese Chemical Society, 2017, 64, 493-502.	0.8	88
23	Effect of heavy metals on the methanogenic UASB granule. Water Research, 1999, 33, 409-416.	5.3	86
24	Research perspectives on constraints, prospects and opportunities in biohydrogen production. International Journal of Hydrogen Energy, 2017, 42, 27471-27481.	3.8	85
25	Biohydrogen production from sucrose using base-enriched anaerobic mixed microflora. Process Biochemistry, 2006, 41, 915-919.	1.8	79
26	Food Waste to Bioenergy via Anaerobic Processes. Energy Procedia, 2014, 61, 307-312.	1.8	75
27	Overcoming propionic acid inhibition of hydrogen fermentation by temperature shift strategy. International Journal of Hydrogen Energy, 2014, 39, 19232-19241.	3.8	75
28	Batch fermentative hydrogen production by enriched mixed culture: Combination strategy and their microbial composition. Journal of Bioscience and Bioengineering, 2014, 117, 222-228.	1.1	73
29	Hydrogen production by the anaerobic fermentation from acid hydrolyzed rice straw hydrolysate. International Journal of Hydrogen Energy, 2011, 36, 14280-14288.	3.8	72
30	Microbial community structure of a starch-feeding fermentative hydrogen production reactor operated under different incubation conditions. International Journal of Hydrogen Energy, 2008, 33, 5242-5249.	3.8	71
31	Optimization of Hydrolysis-Acidogenesis Phase of Swine Manure for Biogas Production Using Two-Stage Anaerobic Fermentation. Processes, 2021, 9, 1324.	1.3	66
32	Waste-to-wealth for valorization of food waste to hydrogen and methane towards creating a sustainable ideal source of bioenergy. Journal of Cleaner Production, 2016, 122, 29-41.	4.6	65
33	Fermentative biohydrogen production and its byproducts: A mini review of current technology developments. Renewable and Sustainable Energy Reviews, 2018, 82, 4215-4220.	8.2	65
34	Co-digestion of leachate with septage using a UASB reactor. Bioresource Technology, 2000, 73, 175-178.	4.8	63
35	Pretreatment and hydrolysis methods for recovery of fermentable sugars from de-oiled Jatropha waste. Bioresource Technology, 2013, 145, 275-279.	4.8	61
36	Enhanced biohydrogen production from beverage industrial wastewater using external nitrogen sources and bioaugmentation with facultative anaerobic strains. Journal of Bioscience and Bioengineering, 2015, 120, 155-160.	1.1	61

#	Article	IF	CITATIONS
37	Highâ€efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an Icelandic hot spring. Biotechnology and Bioengineering, 2008, 101, 665-678.	1.7	60
38	Methanogenic digestion using mixed substrate of acetic, propionic and butyric acids. Water Research, 1986, 20, 385-394.	5.3	59
39	Exploitation of de-oiled jatropha waste for gold nanoparticles synthesis: A green approach. Arabian Journal of Chemistry, 2018, 11, 247-255.	2.3	58
40	Clostridium strain co-cultures for biohydrogen production enhancement from condensed molasses fermentation solubles. International Journal of Hydrogen Energy, 2009, 34, 7173-7181.	3.8	57
41	Sulfate effect on fermentative hydrogen production using anaerobic mixed microflora. International Journal of Hydrogen Energy, 2006, 31, 953-960.	3.8	56
42	Bioprospecting Thermophilic Microorganisms from Icelandic Hot Springs for Hydrogen and Ethanol Production. Energy & Fuels, 2008, 22, 134-140.	2.5	55
43	Starch-containing textile wastewater treatment for biogas and microalgae biomass production. Journal of Cleaner Production, 2017, 168, 331-337.	4.6	55
44	Co-fermentation of water hyacinth and beverage wastewater in powder and pellet form for hydrogen production. Bioresource Technology, 2013, 135, 610-615.	4.8	54
45	Bioconversion of de-oiled Jatropha Waste (DJW) to hydrogen and methane gas by anaerobic fermentation: Influence of substrate concentration, temperature and pH. International Journal of Hydrogen Energy, 2013, 38, 63-72.	3.8	54
46	Application of Clostridium-specific PCR primers on the analysis of dark fermentation hydrogen-producing bacterial community. International Journal of Hydrogen Energy, 2008, 33, 1586-1592.	3.8	53
47	Effect of substrate concentration and pH on biohydrogen production kinetics from food industry wastewater by mixed culture. International Journal of Hydrogen Energy, 2013, 38, 15849-15855.	3.8	52
48	Integration of fermentative hydrogen process and fuel cell for on-line electricity generation. International Journal of Hydrogen Energy, 2007, 32, 802-808.	3.8	50
49	Dark Fermentative Hydrogen Production from Xylose in Different Bioreactors Using Sewage Sludge Microflora. Energy & Fuels, 2008, 22, 113-119.	2.5	50
50	Performance and population analysis of hydrogen production from sugarcane juice by non-sterile continuous stirred tank reactor augmented with Clostridium butyricum. International Journal of Hydrogen Energy, 2011, 36, 8697-8703.	3.8	49
51	Simultaneous hydrogen and ethanol production from sweet potato via dark fermentation. Journal of Cleaner Production, 2012, 27, 155-164.	4.6	47
52	Biohydrogen production from immobilized cells and suspended sludge systems with condensed molasses fermentation solubles. International Journal of Hydrogen Energy, 2011, 36, 14078-14085.	3.8	46
53	Direct fermentation of sweet potato to produce maximal hydrogen and ethanol. Applied Energy, 2012, 100, 10-18.	5.1	46
54	Improved microbial conversion of de-oiled Jatropha waste into biohydrogen via inoculum pretreatment: process optimization by experimental design approach. Biofuel Research Journal, 0, , 209-214.	7.2	46

#	Article	IF	CITATIONS
55	Fermentative biohydrogen production from starch-containing textile wastewater. International Journal of Hydrogen Energy, 2012, 37, 2050-2057.	3.8	42
56	REMOVAL OF POLLUTANTS FROM WASTEWATER BY COAL BOTTOM ASH. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2002, 37, 1509-1522.	0.9	40
57	High rate hydrogen fermentation of cello-lignin fraction in de-oiled jatropha waste using hybrid immobilized cell system. Fuel, 2016, 182, 131-140.	3.4	40
58	Mesophilic continuous fermentative hydrogen production from acid pretreated de-oiled jatropha waste hydrolysate using immobilized microorganisms. Bioresource Technology, 2017, 240, 137-143.	4.8	40
59	Anaerobic hydrogen and methane production from low-strength beverage wastewater. International Journal of Hydrogen Energy, 2019, 44, 14351-14361.	3.8	39
60	Effect of cultivation temperature on fermentative hydrogen production from xylose by a mixed culture. Biomass and Bioenergy, 2008, 32, 1109-1115.	2.9	38
61	Sustainable bioenergy production from tofu-processing wastewater by anaerobic hydrogen fermentation for onsite energy recovery. Renewable Energy, 2013, 58, 60-67.	4.3	38
62	Hydrogenic and methanogenic fermentation of birch and conifer pulps. Applied Energy, 2012, 100, 58-65.	5.1	36
63	Development of a Novel Hybrid Immobilization Material (HYâ€ŀM) for Fermentative Biohydrogen Production from Beverage Wastewater. Journal of the Chinese Chemical Society, 2014, 61, 827-830.	0.8	36
64	Seed inocula for biohydrogen production from biodiesel solid residues. International Journal of Hydrogen Energy, 2012, 37, 15489-15495.	3.8	35
65	Hydrogen and ethanol fermentation of various carbon sources by immobilized Escherichia coli (XL1-Blue). International Journal of Hydrogen Energy, 2014, 39, 6881-6888.	3.8	35
66	Optimizing biohydrogen production from mushroom cultivation waste using anaerobic mixed cultures. International Journal of Hydrogen Energy, 2012, 37, 16473-16478.	3.8	34
67	Enhanced biohydrogen production from beverage wastewater: process performance during various hydraulic retention times and their microbial insights. RSC Advances, 2016, 6, 4160-4169.	1.7	34
68	Enhancing the performance of pilot-scale fermentative hydrogen production by proper combinations of HRT and substrate concentration. International Journal of Hydrogen Energy, 2011, 36, 14289-14294.	3.8	33
69	Quantitative analysis of microorganism composition in a pilot-scale fermentative biohydrogen production system. International Journal of Hydrogen Energy, 2011, 36, 14153-14161.	3.8	33
70	Effects of hydraulic retention time on biohythane production via single-stage anaerobic fermentation in a two-compartment bioreactor. Bioresource Technology, 2019, 292, 121869.	4.8	32
71	Recent trends and prospects in biohythane research: An overview. International Journal of Hydrogen Energy, 2020, 45, 5864-5873.	3.8	32
72	Enhancement of fermentative biohydrogen production from textile desizing wastewater via coagulation-pretreatment. International Journal of Hydrogen Energy, 2017, 42, 12153-12158.	3.8	31

#	Article	IF	CITATIONS
73	Electricity generation comparison of food waste-based bioenergy with wind and solar powers: A mini review. Sustainable Environment Research, 2016, 26, 197-202.	2.1	30
74	Enhancement of Fermentative Hydrogen Production from Beverage Wastewater via Bioaugmentation and Statistical Optimization. Current Biochemical Engineering, 2014, 1, 92-98.	1.3	28
75	Modeling and Optimization of Biohydrogen Production from De-oiled Jatropha Using the Response Surface Method. Arabian Journal for Science and Engineering, 2015, 40, 15-22.	1.1	28
76	Microalgae cultivation using biogas and digestate carbon sources. Biomass and Bioenergy, 2019, 122, 426-432.	2.9	28
77	Biohythane production via single-stage anaerobic fermentation using entrapped hydrogenic and methanogenic bacteria. Bioresource Technology, 2020, 300, 122702.	4.8	26
78	Effect of food to microorganisms (F/M) ratio on biohythane production via single-stage dark fermentation. International Journal of Hydrogen Energy, 2021, 46, 11313-11324.	3.8	25
79	Fermentative bioenergy production from distillers grains using mixed microflora. International Journal of Hydrogen Energy, 2012, 37, 15547-15555.	3.8	23
80	Commercialization model of hydrogen production technology in Taiwan: Dark fermentation technology applications. International Journal of Hydrogen Energy, 2016, 41, 4489-4497.	3.8	23
81	Phase holdups and microbial community in high-rate fermentative hydrogen bioreactors. International Journal of Hydrogen Energy, 2011, 36, 364-373.	3.8	22
82	Biogenic Hydrogen Conversion of De-Oiled Jatropha Waste via Anaerobic Sequencing Batch Reactor Operation: Process Performance, Microbial Insights, and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mrow><mml:mtext>CO</mml:mtext></mml:mrow><mml:mtext>2Efficiency. Scientific World Journal, The, 2014, 2014, 1-9.</mml:mtext></mml:mrow></mml:math 	0.8 ml:mtext>	22
83	Comparative evaluation of hydrogen fermentation of de-oiled Jatropha waste hydrolyzates. International Journal of Hydrogen Energy, 2015, 40, 10766-10774.	3.8	22
84	Removal of Hydrogen Sulfide Gas and Landfill Leachate Treatment Using Coal Bottom Ash. Journal of the Air and Waste Management Association, 2001, 51, 939-945.	0.9	21
85	Hydrogen production from beverage wastewater via dark fermentation and room-temperature methane reforming. International Journal of Hydrogen Energy, 2016, 41, 21736-21746.	3.8	21
86	Biohydrogen Production From Beverage Wastewater Using Selectively Enriched Mixed Culture. Waste and Biomass Valorization, 2020, 11, 1049-1058.	1.8	19
87	Effect of thermal and chemical pretreatments on anaerobic ammonium removal in treating septage using the UASB system. Bioresource Technology, 2002, 83, 259-261.	4.8	17
88	Biohydrogen production in an anaerobic baffled stacking reactor: Recirculation strategy and substrate concentration effects. Biochemical Engineering Journal, 2016, 109, 59-64.	1.8	17
89	Biohythane production via single-stage fermentation using gel-entrapped anaerobic microorganisms: Effect of hydraulic retention time. Bioresource Technology, 2020, 317, 123986.	4.8	17
90	Biogas production from beverage factory wastewater in a mobile bioenergy station. Chemosphere, 2021, 264, 128564.	4.2	17

#	Article	IF	CITATIONS
91	Anaerobic co-digestion of septage and landfill leachate. Bioresource Technology, 1999, 68, 275-282.	4.8	16
92	Converting waste molasses liquor into biohydrogen via dark fermentation using a continuous bioreactor. International Journal of Hydrogen Energy, 2021, 46, 16546-16554.	3.8	16
93	Continuous biohydrogen production from coagulation-pretreated textile desizing wastewater. International Journal of Hydrogen Energy, 2017, 42, 29159-29165.	3.8	15
94	Biohythane production from swine manure and pineapple waste in a single-stage two-chamber digester using gel-entrapped anaerobic microorganisms. International Journal of Hydrogen Energy, 2022, 47, 25245-25255.	3.8	14
95	Toxicity-resistance of sludge biogranules to heavy metals. Biotechnology Letters, 1997, 19, 557-560.	1.1	13
96	Development of Green Energy Waste Activated Carbon for Removal of Trivalent Chromium: Equilibrium and Kinetic Modeling. Separation Science and Technology, 2014, 49, 513-522.	1.3	13
97	Anaerobic hydrogen production from unhydrolyzed mushroom farm waste by indigenous microbiota. Journal of Bioscience and Bioengineering, 2017, 124, 425-429.	1.1	12
98	Mesophilic degradation of butyric acid in anaerobic digestion. Journal of Chemical Technology and Biotechnology, 1993, 56, 191-194.	1.6	10
99	Toxic effect of sulfur compounds on anaerobic biogranule. Journal of Hazardous Materials, 2001, 87, 11-21.	6.5	9
100	Biohydrogen Production from Mushroom Cultivation Waste by Anaerobic Solidâ€state Fermentation. Journal of the Chinese Chemical Society, 2016, 63, 199-204.	0.8	9
101	Continuous anaerobic hydrogen and methane production using water hyacinth feedstock. Arabian Journal for Science and Engineering, 2016, 41, 2563-2571.	1.1	9
102	Effect of concentration on biohydrogen production in a continuous stirred bioreactor using biofilm induced packed-carrier. International Journal of Hydrogen Energy, 2016, 41, 21649-21656.	3.8	9
103	Biohydrogen Production from Textile Wastewater by Mixed Microflora in an Intermittentâ€flow, Stirred Tank Reactor: Effect of Feeding Frequency. Journal of the Chinese Chemical Society, 2014, 61, 791-796.	0.8	8
104	Fermentative Hydrogen and Methane Productions from Organic Wastes: a Review. Current Biochemical Engineering, 2015, 3, 16-23.	1.3	8
105	Batch and continuous biogenic hydrogen fermentation of acid pretreated de-oiled jatropha waste (DJW) hydrolysate. RSC Advances, 2016, 6, 45482-45491.	1.7	8
106	Comparison of Potential Environmental Impacts and Waste-to-Energy Efficiency for Kitchen Waste Treatment Scenarios in Central Taiwan. Processes, 2021, 9, 696.	1.3	8
107	Thermophilic Biohydrogen Fermentation of Kitchen Waste. Waste and Biomass Valorization, 2020, 11, 1041-1047.	1.8	7
108	Roles of organic acids during exectrooxidation reaction over Pt-supported carbon electrodes in direct methanol fuel cells. International Journal of Hydrogen Energy, 2013, 38, 12984-12990.	3.8	6

#	Article	IF	CITATIONS
109	Fe ₃ O ₄ -modified carbon cloth electrode for microbial fuel cells from organic wastewaters. Desalination and Water Treatment, 2016, 57, 29371-29376.	1.0	6
110	Anaerobic Biohydrogen Production Using Rice Husk-Based Biologics. Waste and Biomass Valorization, 2020, 11, 1059-1068.	1.8	6
111	Effect of pH shock on single-stage biohythane production using gel-entrapped anaerobic microorganisms. International Journal of Hydrogen Energy, 2022, 47, 3679-3689.	3.8	6
112	Industrialization roadmap model for fermentative hydrogen production from biomass in Taiwan. International Journal of Hydrogen Energy, 2017, 42, 27460-27470.	3.8	5
113	Sensitivity of anaerobic sludge biogranule to sulfur compounds. Biotechnology Letters, 1999, 21, 421-423.	1.1	3
114	Conference Report: Kitchen waste-based bioenergy: a report of the International Workshop on Kitchen Waste-Based Bioenergy. Biofuels, 2013, 4, 155-157.	1.4	2
115	Biohydrogen Production Perspectives from Organic Waste with Focus on Asia. , 2019, , 413-435.		2
116	Exploring the environmental and economic potential for biogas production from swine manure wastewater by life cycle assessment. Clean Technologies and Environmental Policy, 0, , 1.	2.1	2
117	Application of the Clustering Hybrid Regression Approach to Model Xylose-Based Fermentative Hydrogen Production. Energy & Fuels, 2008, 22, 128-133.	2.5	1
118	Research and Development of Biohydrogen Production in Taiwan. , 2010, , 331-344.		1
119	Scale-up and Commercial Applications of Biohydrogen Production Processes. , 2013, , 339-352.		0