Brian M Hoffman

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3879955/brian-m-hoffman-publications-by-year.pdf

Version: 2024-04-04

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66 248 14,415 109 h-index g-index citations papers 261 16,429 6.48 11.3 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
248	Small-Molecule Mn Antioxidants in Caenorhabditis elegans and Deinococcus radiodurans Supplant MnSOD Enzymes during Aging and Irradiation <i>MBio</i> , 2022 , e0339421	7.8	2
247	End-On Copper(I) Superoxo and Cu(II) Peroxo and Hydroperoxo Complexes Generated by Cryoreduction/Annealing and Characterized by EPR/ENDOR Spectroscopy <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	4
246	A mixed-valent Fe(II)Fe(III) species converts cysteine to an oxazolone/thioamide pair in methanobactin biosynthesis <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119, e2123566119	11.5	1
245	Active-Site Controlled, Jahn-Teller Enabled Regioselectivity in Reductive S-C Bond Cleavage of -Adenosylmethionine in Radical SAM Enzymes. <i>Journal of the American Chemical Society</i> , 2021 , 143, 33	5- 3 48 ⁴	7
244	Interplays of electron and nuclear motions along CO dissociation trajectory in myoglobin revealed by ultrafast X-rays and quantum dynamics calculations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	3
243	Exploring the Role of the Central Carbide of the Nitrogenase Active-Site FeMo-cofactor through Targeted C Labeling and ENDOR Spectroscopy. <i>Journal of the American Chemical Society</i> , 2021 , 143, 91	8 3 -919	0 ¹
242	An ecophysiological explanation for manganese enrichment in rock varnish. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	5
241	Metal ion fluxes controlling amphibian fertilization. <i>Nature Chemistry</i> , 2021 , 13, 683-691	17.6	4
240	-Adenosyl-l-ethionine is a Catalytically Competent Analog of -Adenosyl-l-methione (SAM) in the Radical SAM Enzyme HydG. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 4666-4672	16.4	9
239	S-Adenosyl-l-ethionine is a Catalytically Competent Analog of S-Adenosyl-l-methionine (SAM) in the Radical SAM Enzyme HydG. <i>Angewandte Chemie</i> , 2021 , 133, 4716-4722	3.6	2
238	An Engineered Glutamate in Biosynthetic Models of Heme-Copper Oxidases Drives Complete Product Selectivity by Tuning the Hydrogen-Bonding Network. <i>Biochemistry</i> , 2021 , 60, 346-355	3.2	3
237	The electronic structure of FeV-cofactor in vanadium-dependent nitrogenase. <i>Chemical Science</i> , 2021 , 12, 6913-6922	9.4	6
236	Comment on "Structural evidence for a dynamic metallocofactor during N reduction by Mo-nitrogenase". <i>Science</i> , 2021 , 371,	33.3	10
235	Hydrocarbon Oxidation by an Exposed, Multiply Bonded Iron(III) Oxo Complex. <i>ACS Central Science</i> , 2021 , 7, 1751-1755	16.8	1
234	Coordination of the Copper Centers in Particulate Methane Monooxygenase: Comparison between Methanotrophs and Characterization of the Cu Site by EPR and ENDOR Spectroscopies. <i>Journal of the American Chemical Society</i> , 2021 , 143, 15358-15368	16.4	6
233	Electron Redistribution within the Nitrogenase Active Site FeMo-Cofactor During Reductive Elimination of H to Achieve N?N Triple-Bond Activation. <i>Journal of the American Chemical Society</i> , 2020 , 142, 21679-21690	16.4	11
232	Reduction of Substrates by Nitrogenases. <i>Chemical Reviews</i> , 2020 , 120, 5082-5106	68.1	90

231	The Soybean Lipoxygenase-Substrate Complex: Correlation between the Properties of Tunneling-Ready States and ENDOR-Detected Structures of Ground States. <i>Biochemistry</i> , 2020 , 59, 901	-9170	8
230	CO as a substrate and inhibitor of H reduction for the Mo-, V-, and Fe-nitrogenase isozymes. <i>Journal of Inorganic Biochemistry</i> , 2020 , 213, 111278	4.2	8
229	Structural and spectroscopic characterization of an Fe(VI) bis(imido) complex. Science, 2020, 370, 356-3	5 9 3.3	20
228	The Role of Co-ZSM-5 Catalysts in Aerobic Oxidation of Ethylbenzene. <i>Topics in Catalysis</i> , 2020 , 63, 1708	8- <u>1</u> .716	1
227	Radical SAM Enzyme Spore Photoproduct Lyase: Properties of the Organometallic Intermediate and Identification of Stable Protein Radicals Formed during Substrate-Free Turnover. <i>Journal of the American Chemical Society</i> , 2020 , 142, 18652-18660	16.4	5
226	C Electron Nuclear Double Resonance Spectroscopy Shows Acetyl-CoA Synthase Binds Two Substrate CO in Multiple Binding Modes and Reveals the Importance of a CO-Binding "Alcove". <i>Journal of the American Chemical Society</i> , 2020 , 142, 15362-15370	16.4	5
225	Spectroscopic Description of the E State of Mo Nitrogenase Based on Mo and Fe X-ray Absorption and M¶ssbauer Studies. <i>Inorganic Chemistry</i> , 2019 , 58, 12365-12376	5.1	23
224	Photoinduced Electron Transfer in a Radical SAM Enzyme Generates an -Adenosylmethionine Derived Methyl Radical. <i>Journal of the American Chemical Society</i> , 2019 , 141, 16117-16124	16.4	17
223	MbnH is a diheme MauG-like protein associated with microbial copper homeostasis. <i>Journal of Biological Chemistry</i> , 2019 , 294, 16141-16151	5.4	2
222	Time-Resolved EPR Study of H Reductive Elimination from the Photoexcited Nitrogenase Janus E(4H) Intermediate. <i>Journal of Physical Chemistry B</i> , 2019 , 123, 8823-8828	3.4	7
221	Short-lived neutral FMN and FAD semiquinones are transient intermediates in cryo-reduced yeast NADPH-cytochrome P450 reductase. <i>Archives of Biochemistry and Biophysics</i> , 2019 , 673, 108080	4.1	
220	High-Resolution ENDOR Spectroscopy Combined with Quantum Chemical Calculations Reveals the Structure of Nitrogenase Janus Intermediate E(4H). <i>Journal of the American Chemical Society</i> , 2019 , 141, 11984-11996	16.4	33
219	Particulate methane monooxygenase contains only mononuclear copper centers. <i>Science</i> , 2019 , 364, 566-570	33.3	136
218	Formation and Electronic Structure of an Atypical Cu Site. <i>Journal of the American Chemical Society</i> , 2019 , 141, 4678-4686	16.4	12
217	Mo-, V-, and Fe-Nitrogenases Use a Universal Eight-Electron Reductive-Elimination Mechanism To Achieve N Reduction. <i>Biochemistry</i> , 2019 , 58, 3293-3301	3.2	59
216	The Elusive 5'-Deoxyadenosyl Radical: Captured and Characterized by Electron Paramagnetic Resonance and Electron Nuclear Double Resonance Spectroscopies. <i>Journal of the American Chemical Society</i> , 2019 , 141, 12139-12146	16.4	42
215	Manganese co-localizes with calcium and phosphorus in acidocalcisomes and is mobilized in manganese-deficient conditions. <i>Journal of Biological Chemistry</i> , 2019 , 294, 17626-17641	5.4	32
214	PCuC domains from methane-oxidizing bacteria use a histidine brace to bind copper. <i>Journal of Biological Chemistry</i> , 2019 , 294, 16351-16363	5.4	2

213	Cu-specific CopB transporter: Revising P-type ATPase classification. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 2108-2113	11.5	22
212	Mechanism of N Reduction Catalyzed by Fe-Nitrogenase Involves Reductive Elimination of H. <i>Biochemistry</i> , 2018 , 57, 701-710	3.2	47
211	Organometallic and radical intermediates reveal mechanism of diphthamide biosynthesis. <i>Science</i> , 2018 , 359, 1247-1250	33.3	32
210	Hydride Conformers of the Nitrogenase FeMo-cofactor Two-Electron Reduced State E(2H), Assigned Using Cryogenic Intra Electron Paramagnetic Resonance Cavity Photolysis. <i>Inorganic Chemistry</i> , 2018 , 57, 6847-6852	5.1	17
209	Paradigm Shift for Radical S-Adenosyl-l-methionine Reactions: The Organometallic Intermediate [] Is Central to Catalysis. <i>Journal of the American Chemical Society</i> , 2018 , 140, 8634-8638	16.4	55
208	From micelles to bicelles: Effect of the membrane on particulate methane monooxygenase activity. Journal of Biological Chemistry, 2018 , 293, 10457-10465	5.4	32
207	Energy Transduction in Nitrogenase. Accounts of Chemical Research, 2018, 51, 2179-2186	24.3	62
206	A structurally-characterized peroxomanganese(iv) porphyrin from reversible O binding within a metal-organic framework. <i>Chemical Science</i> , 2018 , 9, 1596-1603	9.4	25
205	Isolation and characterization of a high-spin mixed-valent iron dinitrogen complex. <i>Chemical Communications</i> , 2018 , 54, 13339-13342	5.8	9
204	Critical computational analysis illuminates the reductive-elimination mechanism that activates nitrogenase for N reduction. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E10521-E10530	11.5	69
203	Mechanism of Radical Initiation in the Radical S-Adenosyl-l-methionine Superfamily. <i>Accounts of Chemical Research</i> , 2018 , 51, 2611-2619	24.3	52
202	Characterization of a long overlooked copper protein from methane- and ammonia-oxidizing bacteria. <i>Nature Communications</i> , 2018 , 9, 4276	17.4	30
201	Kinetic Understanding of N Reduction versus H Evolution at the E(4H) Janus State in the Three Nitrogenases. <i>Biochemistry</i> , 2018 , 57, 5706-5714	3.2	25
2 00	ENDOR Characterization of (N)Fe(FH)Fe(N): A Spectroscopic Model for N Binding by the Di-Ehydrido Nitrogenase Janus Intermediate. <i>Inorganic Chemistry</i> , 2018 , 57, 12323-12330	5.1	8
199	Control of electron transfer in nitrogenase. Current Opinion in Chemical Biology, 2018, 47, 54-59	9.7	26
198	Beyond fossil fuel-driven nitrogen transformations. <i>Science</i> , 2018 , 360,	33.3	77²
197	C ENDOR Spectroscopy of Lipoxygenase-Substrate Complexes Reveals the Structural Basis for C-H Activation by Tunneling. <i>Journal of the American Chemical Society</i> , 2017 , 139, 1984-1997	16.4	32
196	Photoinduced Reductive Elimination of H from the Nitrogenase Dihydride (Janus) State Involves a FeMo-cofactor-H Intermediate. <i>Inorganic Chemistry</i> , 2017 , 56, 2233-2240	5.1	33

195	EPR/ENDOR and Theoretical Study of the Jahn-Teller-Active [HIPTNN]MoL Complexes (L = N, NH). <i>Inorganic Chemistry</i> , 2017 , 56, 6906-6919	5.1	11
194	Substrate-Dependent Cleavage Site Selection by Unconventional Radical S-Adenosylmethionine Enzymes in Diphthamide Biosynthesis. <i>Journal of the American Chemical Society</i> , 2017 , 139, 5680-5683	16.4	17
193	Metal Selectivity of a Cd-, Co-, and Zn-Transporting P-type ATPase. <i>Biochemistry</i> , 2017 , 56, 85-95	3.2	13
192	Across the tree of life, radiation resistance is governed by antioxidant Mn, gauged by paramagnetic resonance. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E9253-E9260	11.5	58
191	Mechanism of Nitrogenase H Formation by Metal-Hydride Protonation Probed by Mediated Electrocatalysis and H/D Isotope Effects. <i>Journal of the American Chemical Society</i> , 2017 , 139, 13518-135	5 <u>16</u> 4	38
190	Nitrogen Fixation 2017 , 1-21		12
189	Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme. <i>Journal of the American Chemical Society</i> , 2017 , 139, 11803-11813	16.4	18
188	ENDOR characterization of an iron-alkene complex provides insight into a corresponding organometallic intermediate of nitrogenase. <i>Chemical Science</i> , 2017 , 8, 5941-5948	9.4	6
187	Discovery of the Antitumor Effects of a Porphyrazine Diol (Pz 285) in MDA-MB-231 Breast Tumor Xenograft Models in Mice. <i>ACS Medicinal Chemistry Letters</i> , 2017 , 8, 705-709	4.3	
186	Reductive Elimination of H2 Activates Nitrogenase to Reduce the N?N Triple Bond: Characterization of the E4(4H) Janus Intermediate in Wild-Type Enzyme. <i>Journal of the American Chemical Society</i> , 2016 , 138, 10674-83	16.4	100
185	Characterization of Methanobactin from Methylosinus sp. LW4. <i>Journal of the American Chemical Society</i> , 2016 , 138, 11124-7	16.4	27
184	Charge-Disproportionation Symmetry Breaking Creates a Heterodimeric Myoglobin Complex with Enhanced Affinity and Rapid Intracomplex Electron Transfer. <i>Journal of the American Chemical Society</i> , 2016 , 138, 12615-28	16.4	5
183	Ultrafast Excited State Relaxation of a Metalloporphyrin Revealed by Femtosecond X-ray Absorption Spectroscopy. <i>Journal of the American Chemical Society</i> , 2016 , 138, 8752-64	16.4	67
182	Reversible Photoinduced Reductive Elimination of H2 from the Nitrogenase Dihydride State, the E(4)(4H) Janus Intermediate. <i>Journal of the American Chemical Society</i> , 2016 , 138, 1320-7	16.4	48
181	Role of the Proximal Cysteine Hydrogen Bonding Interaction in Cytochrome P450 2B4 Studied by Cryoreduction, Electron Paramagnetic Resonance, and Electron-Nuclear Double Resonance Spectroscopy. <i>Biochemistry</i> , 2016 , 55, 869-83	3.2	19
180	Comparison of the Mechanisms of Heme Hydroxylation by Heme Oxygenases-1 and -2: Kinetic and Cryoreduction Studies. <i>Biochemistry</i> , 2016 , 55, 62-8	3.2	7
179	Spectroscopic and Crystallographic Evidence for the Role of a Water-Containing H-Bond Network in Oxidase Activity of an Engineered Myoglobin. <i>Journal of the American Chemical Society</i> , 2016 , 138, 1134	<u>1</u> 6.4	23
178	Radical SAM catalysis via an organometallic intermediate with an Fe-[5'-C]-deoxyadenosyl bond. <i>Science</i> , 2016 , 352, 822-5	33.3	86

177	Negative cooperativity in the nitrogenase Fe protein electron delivery cycle. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E5783-E5791	11.5	25
176	Imaging ultrafast excited state pathways in transition metal complexes by X-ray transient absorption and scattering using X-ray free electron laser source. <i>Faraday Discussions</i> , 2016 , 194, 639-65	58 ^{3.6}	10
175	Exploring Electron/Proton Transfer and Conformational Changes in the Nitrogenase MoFe Protein and FeMo-cofactor Through Cryoreduction/EPR Measurements. <i>Israel Journal of Chemistry</i> , 2016 , 56, 841-851	3.4	10
174	CO2 Reduction Catalyzed by Nitrogenase: Pathways to Formate, Carbon Monoxide, and Methane. <i>Inorganic Chemistry</i> , 2016 , 55, 8321-30	5.1	34
173	Organometallic Complex Formed by an Unconventional Radical S-Adenosylmethionine Enzyme. <i>Journal of the American Chemical Society</i> , 2016 , 138, 9755-8	16.4	20
172	The C-terminal heme regulatory motifs of heme oxygenase-2 are redox-regulated heme binding sites. <i>Biochemistry</i> , 2015 , 54, 2709-18	3.2	21
171	Identification of a key catalytic intermediate demonstrates that nitrogenase is activated by the reversible exchange of NIfor HIJ Journal of the American Chemical Society, 2015 , 137, 3610-5	16.4	83
170	Advanced paramagnetic resonance spectroscopies of iron-sulfur proteins: Electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM). <i>Biochimica Et Biophysica Acta - Molecular Cell Research</i> , 2015 , 1853, 1370-94	4.9	25
169	Why Nature Uses Radical SAM Enzymes so Widely: Electron Nuclear Double Resonance Studies of Lysine 2,3-Aminomutase Show the 5'-dAdol'Free Radical" Is Never Free. <i>Journal of the American Chemical Society</i> , 2015 , 137, 7111-21	16.4	50
168	Spectroscopic studies reveal that the heme regulatory motifs of heme oxygenase-2 are dynamically disordered and exhibit redox-dependent interaction with heme. <i>Biochemistry</i> , 2015 , 54, 2693-708	3.2	14
167	Evidence That Compound I Is the Active Species in Both the Hydroxylase and Lyase Steps by Which P450scc Converts Cholesterol to Pregnenolone: EPR/ENDOR/Cryoreduction/Annealing Studies. <i>Biochemistry</i> , 2015 , 54, 7089-97	3.2	25
166	Characterization of an Fe?N-NH2 Intermediate Relevant to Catalytic N2 Reduction to NH3. <i>Journal of the American Chemical Society</i> , 2015 , 137, 7803-7809	16.4	134
165	Composition and Structure of the Inorganic Core of Relaxed Intermediate X(Y122F) of Escherichia coli Ribonucleotide Reductase. <i>Journal of the American Chemical Society</i> , 2015 , 137, 15558-66	16.4	15
164	Synthesis and characterization of a porphyrazine-Gd(III) MRI contrast agent and in vivo imaging of a breast cancer xenograft model. <i>Contrast Media and Molecular Imaging</i> , 2014 , 9, 313-22	3.2	15
163	Mechanism of nitrogen fixation by nitrogenase: the next stage. <i>Chemical Reviews</i> , 2014 , 114, 4041-62	68.1	1073
162	Nitrite and hydroxylamine as nitrogenase substrates: mechanistic implications for the pathway of Nireduction. <i>Journal of the American Chemical Society</i> , 2014 , 136, 12776-83	16.4	28
161	A confirmation of the quench-cryoannealing relaxation protocol for identifying reduction states of freeze-trapped nitrogenase intermediates. <i>Inorganic Chemistry</i> , 2014 , 53, 3688-93	5.1	31
160	EPR, ENDOR, and electronic structure studies of the Jahn-Teller distortion in an Fe(V) nitride. Journal of the American Chemical Society, 2014 , 136, 12323-36	16.4	42

(2011-2014)

159	Free Hirotation vs Jahn-Teller constraints in the nonclassical trigonal (TPB)Co-Hiromplex. <i>Journal of the American Chemical Society</i> , 2014 , 136, 14998-5009	16.4	31
158	Electron paramagnetic resonance and electron-nuclear double resonance studies of the reactions of cryogenerated hydroperoxoferric-hemoprotein intermediates. <i>Biochemistry</i> , 2014 , 53, 4894-903	3.2	12
157	Identification of the valence and coordination environment of the particulate methane monooxygenase copper centers by advanced EPR characterization. <i>Journal of the American Chemical Society</i> , 2014 , 136, 11767-75	16.4	42
156	Internal dynamics of a supramolecular nanofibre. <i>Nature Materials</i> , 2014 , 13, 812-6	27	131
155	The use of deuterated camphor as a substrate in (1)H ENDOR studies of hydroxylation by cryoreduced oxy P450cam provides new evidence of the involvement of compound I. <i>Biochemistry</i> , 2013 , 52, 667-71	3.2	24
154	Nitrogenase: a draft mechanism. Accounts of Chemical Research, 2013, 46, 587-95	24.3	282
153	Responses of Mn2+ speciation in Deinococcus radiodurans and Escherichia coli to Fadiation by advanced paramagnetic resonance methods. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 5945-50	11.5	55
152	On reversible H2 loss upon N2 binding to FeMo-cofactor of nitrogenase. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 16327-32	11.5	78
151	Electron transfer precedes ATP hydrolysis during nitrogenase catalysis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 16414-9	11.5	74
150	Temperature invariance of the nitrogenase electron transfer mechanism. <i>Biochemistry</i> , 2012 , 51, 8391-	·83.2	11
150 149	Temperature invariance of the nitrogenase electron transfer mechanism. <i>Biochemistry</i> , 2012 , 51, 8391- Evidence for oxygen binding at the active site of particulate methane monooxygenase. <i>Journal of the American Chemical Society</i> , 2012 , 134, 7640-3	16.4	
	Evidence for oxygen binding at the active site of particulate methane monooxygenase. <i>Journal of</i>		
149	Evidence for oxygen binding at the active site of particulate methane monooxygenase. <i>Journal of the American Chemical Society</i> , 2012 , 134, 7640-3 Multi-gram synthesis of a porphyrazine platform for cellular translocation, conjugation to	16.4	76
149	Evidence for oxygen binding at the active site of particulate methane monooxygenase. <i>Journal of the American Chemical Society</i> , 2012 , 134, 7640-3 Multi-gram synthesis of a porphyrazine platform for cellular translocation, conjugation to Doxorubicin, and cellular uptake. <i>Tetrahedron Letters</i> , 2012 , 53, 5475-5478 Modeling the signatures of hydrides in metalloenzymes: ENDOR analysis of a Di-iron	16.4	76
149 148 147	Evidence for oxygen binding at the active site of particulate methane monooxygenase. <i>Journal of the American Chemical Society</i> , 2012 , 134, 7640-3 Multi-gram synthesis of a porphyrazine platform for cellular translocation, conjugation to Doxorubicin, and cellular uptake. <i>Tetrahedron Letters</i> , 2012 , 53, 5475-5478 Modeling the signatures of hydrides in metalloenzymes: ENDOR analysis of a Di-iron Fe(ENH)(EH)Fe core. <i>Journal of the American Chemical Society</i> , 2012 , 134, 12637-47	16.4 2 16.4	76 13 37
149 148 147 146	Evidence for oxygen binding at the active site of particulate methane monooxygenase. <i>Journal of the American Chemical Society</i> , 2012 , 134, 7640-3 Multi-gram synthesis of a porphyrazine platform for cellular translocation, conjugation to Doxorubicin, and cellular uptake. <i>Tetrahedron Letters</i> , 2012 , 53, 5475-5478 Modeling the signatures of hydrides in metalloenzymes: ENDOR analysis of a Di-iron Fe(ENH)(EH)Fe core. <i>Journal of the American Chemical Society</i> , 2012 , 134, 12637-47 Characterization of a cobalt-specific P(1B)-ATPase. <i>Biochemistry</i> , 2012 , 51, 7891-900 Compound I is the reactive intermediate in the first monooxygenation step during conversion of cholesterol to pregnenolone by cytochrome P450scc: EPR/ENDOR/cryoreduction/annealing	16.4 2 16.4 3.2	76 13 37 24
149 148 147 146	Evidence for oxygen binding at the active site of particulate methane monooxygenase. <i>Journal of the American Chemical Society</i> , 2012 , 134, 7640-3 Multi-gram synthesis of a porphyrazine platform for cellular translocation, conjugation to Doxorubicin, and cellular uptake. <i>Tetrahedron Letters</i> , 2012 , 53, 5475-5478 Modeling the signatures of hydrides in metalloenzymes: ENDOR analysis of a Di-iron Fe(ENH)(EH)Fe core. <i>Journal of the American Chemical Society</i> , 2012 , 134, 12637-47 Characterization of a cobalt-specific P(1B)-ATPase. <i>Biochemistry</i> , 2012 , 51, 7891-900 Compound I is the reactive intermediate in the first monooxygenation step during conversion of cholesterol to pregnenolone by cytochrome P450scc: EPR/ENDOR/cryoreduction/annealing studies. <i>Journal of the American Chemical Society</i> , 2012 , 134, 17149-56 Characterization of the Fe?H Bond in a Three-Coordinate Terminal Hydride Complex of Iron(I).	16.4 2 16.4 3.2	76 13 37 24 36

141	Active intermediates in heme monooxygenase reactions as revealed by cryoreduction/annealing, EPR/ENDOR studies. <i>Archives of Biochemistry and Biophysics</i> , 2011 , 507, 36-43	4.1	47
140	ENDOR/HYSCORE studies of the common intermediate trapped during nitrogenase reduction of N2H2, CH3N2H, and N2H4 support an alternating reaction pathway for N2 reduction. <i>Journal of the American Chemical Society</i> , 2011 , 133, 11655-64	16.4	75
139	Design, Implementation, Simulation, and Visualization of a Highly Efficient RIM Microfluidic Mixer for Rapid Freeze-Quench of Biological Samples. <i>Applied Magnetic Resonance</i> , 2011 , 40, 415-425	0.8	8
138	Transformation of an [Fe(ᢓ-N2H3)]+ Species to EDelocalized [Fe2(EN2H2)]2+/+ Complexes. <i>Angewandte Chemie</i> , 2011 , 123, 3508-3511	3.6	6
137	Electron transfer within nitrogenase: evidence for a deficit-spending mechanism. <i>Biochemistry</i> , 2011 , 50, 9255-63	3.2	97
136	Crystal structure and characterization of particulate methane monooxygenase from Methylocystis species strain M. <i>Biochemistry</i> , 2011 , 50, 10231-40	3.2	101
135	Chiral bis-acetal porphyrazines as near-infrared optical agents for detection and treatment of cancer. <i>Photochemistry and Photobiology</i> , 2010 , 86, 410-7	3.6	20
134	Chiral porphyrazine near-IR optical imaging agent exhibiting preferential tumor accumulation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1284-8	11.5	64
133	Probing in vivo Mn2+ speciation and oxidative stress resistance in yeast cells with electron-nuclear double resonance spectroscopy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 15335-9	11.5	93
132	Paramagnetic intermediates of (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE/IspG) under steady-state and pre-steady-state conditions. <i>Journal of the American Chemical Society</i> , 2010 , 132, 14509-20	16.4	35
131	Identification of a hemerythrin-like domain in a P1B-type transport ATPase. <i>Biochemistry</i> , 2010 , 49, 706	i0₃&	22
130	Is Mo involved in hydride binding by the four-electron reduced (E4) intermediate of the nitrogenase MoFe protein?. <i>Journal of the American Chemical Society</i> , 2010 , 132, 2526-7	16.4	72
129	Formation of {[HIPTN(3)N]Mo(III)H}(-) by heterolytic cleavage of H(2) as established by EPR and ENDOR spectroscopy. <i>Inorganic Chemistry</i> , 2010 , 49, 704-13	5.1	31
128	Conformational gating of electron transfer from the nitrogenase Fe protein to MoFe protein. <i>Journal of the American Chemical Society</i> , 2010 , 132, 6894-5	16.4	52
127	Synthesis and characterization of new porphyrazine-Gd(III) conjugates as multimodal MR contrast agents. <i>Bioconjugate Chemistry</i> , 2010 , 21, 2267-75	6.3	45
126	Uncoupling nitrogenase: catalytic reduction of hydrazine to ammonia by a MoFe protein in the absence of Fe protein-ATP. <i>Journal of the American Chemical Society</i> , 2010 , 132, 13197-9	16.4	54
125	Experimental and theoretical EPR study of Jahn-Teller-active [HIPTN(3)N]MoL complexes (L = N(2), CO, NH(3)). <i>Journal of the American Chemical Society</i> , 2010 , 132, 8645-56	16.4	50
124	Probing the ternary complexes of indoleamine and tryptophan 2,3-dioxygenases by cryoreduction EPR and ENDOR spectroscopy. <i>Journal of the American Chemical Society</i> , 2010 , 132, 5494-500	16.4	44

123	Simulating suppression effects in Pulsed ENDOR, and the 'hole in the middle' of Mims and Davies ENDOR Spectra. <i>Applied Magnetic Resonance</i> , 2010 , 37, 763-779	0.8	24
122	EPR and ENDOR characterization of the reactive intermediates in the generation of NO by cryoreduced oxy-nitric oxide synthase from Geobacillus stearothermophilus. <i>Journal of the American Chemical Society</i> , 2009 , 131, 14493-507	16.4	58
121	Trapping an intermediate of dinitrogen (N2) reduction on nitrogenase. <i>Biochemistry</i> , 2009 , 48, 9094-102	23.2	53
120	Mechanism of Mo-dependent nitrogenase. Annual Review of Biochemistry, 2009, 78, 701-22	29.1	457
119	Synthesis and characterization of periphery-functionalized porphyrazines containing mixed pyrrolyl and pyridylmethylamino groups. <i>Journal of Porphyrins and Phthalocyanines</i> , 2009 , 13, 223-234	1.8	12
118	Climbing nitrogenase: toward a mechanism of enzymatic nitrogen fixation. <i>Accounts of Chemical Research</i> , 2009 , 42, 609-19	24.3	287
117	Structure of the nucleotide radical formed during reaction of CDP/TTP with the E441Q-alpha2beta2 of E. coli ribonucleotide reductase. <i>Journal of the American Chemical Society</i> , 2009 , 131, 200-11	16.4	50
116	Porphyrazines: Designer Macrocycles by Peripheral Substituent Change. <i>Australian Journal of Chemistry</i> , 2008 , 61, 235	1.2	50
115	Characterization of the microsomal cytochrome P450 2B4 O2 activation intermediates by cryoreduction and electron paramagnetic resonance. <i>Biochemistry</i> , 2008 , 47, 9661-6	3.2	42
114	EPR and ENDOR studies of cryoreduced compounds II of peroxidases and myoglobin. Proton-coupled electron transfer and protonation status of ferryl hemes. <i>Biochemistry</i> , 2008 , 47, 5147-5	53 ^{.2}	54
113	The metal centers of particulate methane monooxygenase from Methylosinus trichosporium OB3b. <i>Biochemistry</i> , 2008 , 47, 6793-801	3.2	104
112	Diazene (HN=NH) is a substrate for nitrogenase: insights into the pathway of N2 reduction. <i>Biochemistry</i> , 2007 , 46, 6784-94	3.2	84
111	Testing if the interstitial atom, X, of the nitrogenase molybdenum-iron cofactor is N or C: ENDOR, ESEEM, and DFT studies of the $S = 3/2$ resting state in multiple environments. <i>Inorganic Chemistry</i> , 2007 , 46, 11437-49	5.1	77
110	Distinct reaction pathways followed upon reduction of oxy-heme oxygenase and oxy-myoglobin as characterized by Massbauer spectroscopy. <i>Journal of the American Chemical Society</i> , 2007 , 129, 1402-12	<u>,</u> 16.4	57
109	Tuning the Singlet Oxygen Quantum Yield of Near-IR bsorbing Porphyrazines 4. <i>Photochemistry and Photobiology</i> , 2007 , 77, 18-21	3.6	5
108	Tuning the Singlet Oxygen Quantum Yield of Near-IREbsorbing Porphyrazines. <i>Photochemistry and Photobiology</i> , 2007 , 78, 645-645	3.6	
107	Connecting nitrogenase intermediates with the kinetic scheme for N2 reduction by a relaxation protocol and identification of the N2 binding state. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 1451-5	11.5	91
106	EPR study of the low-spin [d(3); S =(1)/(2)], Jahn-Teller-active, dinitrogen complex of a molybdenum trisamidoamine. <i>Journal of the American Chemical Society</i> , 2007 , 129, 3480-1	16.4	22

105	A methyldiazene (HN=N-CH3)-derived species bound to the nitrogenase active-site FeMo cofactor: Implications for mechanism. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 17113-8	11.5	74
104	Rapid freeze-quench ENDOR study of chloroperoxidase compound I: the site of the radical. <i>Journal of the American Chemical Society</i> , 2006 , 128, 5598-9	16.4	71
103	Spectroscopic approaches to elucidating novel iron-sulfur chemistry in the "radical-Sam" protein superfamily. <i>Inorganic Chemistry</i> , 2005 , 44, 727-41	5.1	95
102	Trapping H- bound to the nitrogenase FeMo-cofactor active site during H2 evolution: characterization by ENDOR spectroscopy. <i>Journal of the American Chemical Society</i> , 2005 , 127, 6231-41	16.4	170
101	Substrate interactions with the nitrogenase active site. <i>Accounts of Chemical Research</i> , 2005 , 38, 208-14	24.3	177
100	Substrate modulation of the properties and reactivity of the oxy-ferrous and hydroperoxo-ferric intermediates of cytochrome P450cam as shown by cryoreduction-EPR/ENDOR spectroscopy. Journal of the American Chemical Society, 2005, 127, 1403-13	16.4	97
99	Intermediates trapped during nitrogenase reduction of N triple bond N, CH3-N=NH, and H2N-NH2. Journal of the American Chemical Society, 2005 , 127, 14960-1	16.4	112
98	Trapping a hydrazine reduction intermediate on the nitrogenase active site. <i>Biochemistry</i> , 2005 , 44, 8030	0 ₅ .Z	89
97	Electron inventory, kinetic assignment (E(n)), structure, and bonding of nitrogenase turnover intermediates with C2H2 and CO. <i>Journal of the American Chemical Society</i> , 2005 , 127, 15880-90	16.4	58
96	Differential influence of dynamic processes on forward and reverse electron transfer across a protein-protein interface. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 3564-9	11.5	50
95	Conformational substates of the oxyheme centers in alpha and beta subunits of hemoglobin as disclosed by EPR and ENDOR studies of cryoreduced protein. <i>Biochemistry</i> , 2004 , 43, 6330-8	3.2	31
94	An organometallic intermediate during alkyne reduction by nitrogenase. <i>Journal of the American Chemical Society</i> , 2004 , 126, 9563-9	16.4	105
93	Electron-nuclear double resonance spectroscopy (and electron spin-echo envelope modulation spectroscopy) in bioinorganic chemistry. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 3575-8	11.5	64
92	Functional solitare- and trans-hybrids, the synthesis, characterization, electrochemistry and reactivity of porphyrazine/phthalocyanine hybrids bearing nitro and amino functionality. <i>Journal of Porphyrins and Phthalocyanines</i> , 2003 , 07, 700-712	1.8	51
91	Q-Band ENDOR Studies of the Nitrogenase MoFe Protein under Turnover Conditions. <i>ACS Symposium Series</i> , 2003 , 150-178	0.4	6
90	Tuning the singlet oxygen quantum yield of near-IR-absorbing porphyrazines. <i>Photochemistry and Photobiology</i> , 2003 , 77, 18-21	3.6	23
89	Paramagnetic Resonance in Mechanistic Studies of Fe-S/Radical Enzymes. <i>ACS Symposium Series</i> , 2003 , 113-127	0.4	
88	Studies on seco-porphyrazines: a case study on serendipity. <i>Dalton Transactions</i> , 2003 , 2093	4.3	47

(2000-2003)

87	Effects of substrates (methyl isocyanide, C2H2) and inhibitor (CO) on resting-state wild-type and NifV(-)Klebsiella pneumoniae MoFe proteins. <i>Journal of Inorganic Biochemistry</i> , 2003 , 93, 18-32	4.2	9
86	Coordination and mechanism of reversible cleavage of S-adenosylmethionine by the [4Fe-4S] center in lysine 2,3-aminomutase. <i>Journal of the American Chemical Society</i> , 2003 , 125, 11788-9	16.4	100
85	A superoxo-ferrous state in a reduced oxy-ferrous hemoprotein and model compounds. <i>Journal of the American Chemical Society</i> , 2003 , 125, 16340-6	16.4	55
84	Kinetic isotope effects on the rate-limiting step of heme oxygenase catalysis indicate concerted proton transfer/heme hydroxylation. <i>Journal of the American Chemical Society</i> , 2003 , 125, 16208-9	16.4	66
83	Substrate binding to NO-ferro-naphthalene 1,2-dioxygenase studied by high-resolution Q-band pulsed 2H-ENDOR spectroscopy. <i>Journal of the American Chemical Society</i> , 2003 , 125, 7056-66	16.4	51
82	Localization of a substrate binding site on the FeMo-cofactor in nitrogenase: trapping propargyl alcohol with an alpha-70-substituted MoFe protein. <i>Biochemistry</i> , 2003 , 42, 9102-9	3.2	82
81	ENDOR of metalloenzymes. Accounts of Chemical Research, 2003, 36, 522-9	24.3	73
80	Purified particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a dimer with both mononuclear copper and a copper-containing cluster. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 3820-5	11.5	123
79	Mechanistic enzymology of oxygen activation by the cytochromes P450. <i>Drug Metabolism Reviews</i> , 2002 , 34, 691-708	7	67
78	Peripherally Functionalized Porphyrazines: Novel Metallomacrocycles with Broad, Untapped Potential. <i>Progress in Inorganic Chemistry</i> , 2002 , 473-590		19
77	Catalytic mechanism of heme oxygenase through EPR and ENDOR of cryoreduced oxy-heme oxygenase and its Asp 140 mutants. <i>Journal of the American Chemical Society</i> , 2002 , 124, 1798-808	16.4	146
76	An anchoring role for FeS clusters: chelation of the amino acid moiety of S-adenosylmethionine to the unique iron site of the [4Fe-4S] cluster of pyruvate formate-lyase activating enzyme. <i>Journal of the American Chemical Society</i> , 2002 , 124, 11270-1	16.4	156
75	Electron-nuclear double resonance spectroscopic evidence that S-adenosylmethionine binds in contact with the catalytically active [4Fe-4S](+) cluster of pyruvate formate-lyase activating enzyme. <i>Journal of the American Chemical Society</i> , 2002 , 124, 3143-51	16.4	159
74	Lanthanide porphyrazine sandwich complexes: synthetic, structural and spectroscopic investigations. <i>Dalton Transactions RSC</i> , 2001 , 3269-3273		18
73	Hydroxylation of camphor by reduced oxy-cytochrome P450cam: mechanistic implications of EPR and ENDOR studies of catalytic intermediates in native and mutant enzymes. <i>Journal of the American Chemical Society</i> , 2001 , 123, 1403-15	16.4	406
72	High-frequency and field EPR investigation of (8,12-diethyl-2,3,7,13,17,18-hexamethylcorrolato)manganese(III). <i>Journal of the American Chemical Society</i> , 2001 , 123, 7890-7	16.4	53
71	Interaction of acetylene and cyanide with the resting state of nitrogenase alpha-96-substituted MoFe proteins. <i>Biochemistry</i> , 2001 , 40, 13816-25	3.2	37
70	Synthesis, Characterization and Reactions of Enantiomerically Pure Winged Spirane Porphyrazines. <i>Tetrahedron</i> , 2000 , 56, 6565-6569	2.4	14

69	Investigation of exchange couplings in [Fe3S4]+ clusters by electron spin-lattice relaxation. <i>Journal of Biological Inorganic Chemistry</i> , 2000 , 5, 369-80	3.7	21
68	Cytochrome c peroxidase-cytochrome c complex: locating the second binding domain on cytochrome c peroxidase with site-directed mutagenesis. <i>Biochemistry</i> , 2000 , 39, 10132-9	3.2	46
67	Characterization of an Intermediate in the Reduction of Acetylene by the Nitrogenase EGln195 MoFe Protein by Q-band EPR and 13C,1H ENDOR. <i>Journal of the American Chemical Society</i> , 2000 , 122, 5582-5587	16.4	42
66	Nitrogenase reduction of carbon disulfide: freeze-quench EPR and ENDOR evidence for three sequential intermediates with cluster-bound carbon moieties. <i>Biochemistry</i> , 2000 , 39, 1114-9	3.2	31
65	Calculation of z-coordinates and orientational restraints using a metal binding tag. <i>Biochemistry</i> , 2000 , 39, 15217-24	3.2	46
64	Porphyrazinediols: Synthesis, Characterization, and Complexation to Group IVB Metallocenes. Journal of Organic Chemistry, 2000 , 65, 1774-1779	4.2	33
63	ENDOR Spectroscopic Evidence for the Geometry of Binding ofretro-inverso-NENitroarginine-Containing Dipeptide Amides to Neuronal Nitric Oxide Synthase. <i>Journal of the American Chemical Society</i> , 2000 , 122, 7869-7875	16.4	13
62	Multi-domain binding of cytochrome c peroxidase by cytochrome c: Thermodynamic vs. microscopic binding constants. <i>Israel Journal of Chemistry</i> , 2000 , 40, 35-46	3.4	10
61	An EPR study of the dinuclear iron site in the soluble methane monooxygenase from Methylococcus capsulatus (Bath) reduced by one electron at 77 K: the effects of component interactions and the binding of small molecules to the diiron(III) center. <i>Biochemistry</i> , 1999 , 38, 4188-97	3.2	55
60	EPR and ENDOR of Catalytic Intermediates in Cryoreduced Native and Mutant Oxy-Cytochromes P450cam: Mutation-Induced Changes in the Proton Delivery System. <i>Journal of the American Chemical Society</i> , 1999 , 121, 10654-10655	16.4	127
59	Hydroperoxy-Heme Oxygenase Generated by Cryoreduction Catalyzes the Formation of Emeso-Hydroxyheme as Detected by EPR and ENDOR. <i>Journal of the American Chemical Society</i> , 1999 , 121, 10656-10657	16.4	132
58	Binding and Electron Transfer between Cytochrome b5 and the Hemoglobin Hand Esubunits through the Use of [Zn, Fe] Hybrids. <i>Journal of the American Chemical Society</i> , 1998 , 120, 11256-11262	16.4	23
57	Cryogenic Electron Tunneling within Mixed-Metal Hemoglobin Hybrids: Protein Glassing and Electron-Transfer Energetics. <i>Journal of the American Chemical Society</i> , 1998 , 120, 11401-11407	16.4	35
56	The Core Structure of X Generated in the Assembly of the Diiron Cluster of Ribonucleotide Reductase: 1702 and H2170 ENDOR. <i>Journal of the American Chemical Society</i> , 1998 , 120, 12910-12919	16.4	111
55	Generation of a Mixed-Valent Fe(III)Fe(IV) Form of Intermediate Q in the Reaction Cycle of Soluble Methane Monooxygenase, an Analog of Intermediate X in Ribonucleotide Reductase R2 Assembly. Journal of the American Chemical Society, 1998, 120, 2190-2191	16.4	59
54	Structure Determination by Combination of CW and Pulsed '2-D' Orientation-Selective 1,2H Q-Band Electron-Nuclear Double Resonance. <i>ACS Symposium Series</i> , 1998 , 2-15	0.4	1
53	Photocurrent from photocorrosion of aluminum electrode in porphyrin/Al Schottky-barrier cells. <i>Applied Physics Letters</i> , 1997 , 71, 674-676	3.4	22
52	Identification of the Protonated Oxygenic Ligands of Ribonucleotide Reductase Intermediate X by Q-Band1,2H CW and Pulsed ENDOR. <i>Journal of the American Chemical Society</i> , 1997 , 119, 9816-9824	16.4	107

(1995-1997)

Photoinduced Electron Transfer between Cytochrome c Peroxidase (D37K) and Zn-Substituted Cytochrome c: Probing the Two-Domain Binding and Reactivity of the Peroxidase. <i>Journal of the American Chemical Society</i> , 1997 , 119, 269-277	16.4	34
CO Binding to the FeMo Cofactor of CO-Inhibited Nitrogenase: 13CO and 1H Q-Band ENDOR Investigation. <i>Journal of the American Chemical Society</i> , 1997 , 119, 10121-10126	16.4	111
Metal-Ion Valencies of the FeMo Cofactor in CO-Inhibited and Resting State Nitrogenase by 57Fe Q-Band ENDOR. <i>Journal of the American Chemical Society</i> , 1997 , 119, 11395-11400	16.4	118
Structure of the Modified Heme in Allylbenzene-Inactivated Chloroperoxidase Determined by Q-Band CW and Pulsed ENDOR. <i>Journal of the American Chemical Society</i> , 1997 , 119, 4059-4069	16.4	31
Enantiomerically Pure Winged Spirane Porphyrazinoctaols. <i>Angewandte Chemie International Edition in English</i> , 1997 , 36, 760-761		35
Enantiomerenreine schaufelradartige Spiro-Porphyrazinoctaolderivate. <i>Angewandte Chemie</i> , 1997 , 109, 806-807	3.6	
Making hyperfine selection in Mims ENDOR independent of deadtime. <i>Chemical Physics Letters</i> , 1997 , 269, 208-214	2.5	49
Identification of the CO-Binding Cluster in Nitrogenase MoFe Protein by ENDOR of 57Fe Isotopomers. <i>Journal of the American Chemical Society</i> , 1996 , 118, 8707-8709	16.4	77
Investigation of the Dinuclear Fe Center of Methane Monooxygenase by Advanced Paramagnetic Resonance Techniques: On the Geometry of DMSO Binding. <i>Journal of the American Chemical Society</i> , 1996 , 118, 121-134	16.4	80
Reconsideration of X, the Diiron Intermediate Formed during Cofactor Assembly in E. coli Ribonucleotide Reductase. <i>Journal of the American Chemical Society</i> , 1996 , 118, 7551-7557	16.4	234
gemini-Porphyrazines: The Synthesis and Characterization of Metal-Capped cis- and trans-Porphyrazine Tetrathiolates. <i>Journal of the American Chemical Society</i> , 1996 , 118, 10487-10493	16.4	62
Insights into the Role of Nickel in Hydrogenase. <i>Advances in Chemistry Series</i> , 1996 , 21-60		7
Q-Band Pulsed Electron Spin-Echo Spectrometer and Its Application to ENDOR and ESEEM. <i>Journal of Magnetic Resonance Series A</i> , 1996 , 119, 38-44		127
Ferromagnetism in a New Structural, Phase of [Fe(C5Me5)2] [TCNQ]. <i>Molecular Crystals and Liquid Crystals</i> , 1995 , 273, 17-20		5
Compound ES of Cytochrome c Peroxidase Contains a Trp .piCation Radical: Characterization by Continuous Wave and Pulsed Q-Band External Nuclear Double Resonance Spectroscopy. <i>Journal of the American Chemical Society</i> , 1995 , 117, 9033-9041	16.4	166
Investigation of CO bound to inhibited forms of nitrogenase MoFe protein by 13C ENDOR. <i>Journal of the American Chemical Society</i> , 1995 , 117, 8686-8687	16.4	83
Protein structure and mechanism studied by electron nuclear double resonance spectroscopy. <i>Methods in Enzymology</i> , 1995 , 246, 554-89	1.7	37
Octathioporphyrazin-Kronenether: ein achtkerniger AgI-Komplex mit Koordination der Ionen in meso-Taschen. <i>Angewandte Chemie</i> , 1995 , 107, 2173-2176	3.6	5
	Cytochrome c: Probing the Two-Domain Binding and Reactivity of the Peroxidase. <i>Journal of the American Chemical Society</i> , 1997, 119, 269-277 CO Binding to the FeMo Cofactor of CO-Inhibited Nitrogenase: 13CO and 1H Q-Band ENDOR Investigation. <i>Journal of the American Chemical Society</i> , 1997, 119, 10121-10126 Metal-Ion Valencies of the FeMo Cofactor in CO-Inhibited and Resting State Nitrogenase by 57Fe Q-Band ENDOR. <i>Journal of the American Chemical Society</i> , 1997, 119, 11395-11400 Structure of the Modified Heme in Allylbenzene-Inactivated Chloroperoxidase Determined by Q-Band CW and Pulsed ENDOR. <i>Journal of the American Chemical Society</i> , 1997, 119, 4059-4069 Enantiomerically Pure WingediSpirane Porphyrazinoctaols. <i>Angewandte Chemie International Edition in English</i> , 1997, 36, 760-761 Enantiomerenreine schaufelradartige Spiro-Porphyrazinoctaolderivate. <i>Angewandte Chemie</i> , 1997, 109, 806-807 Making hyperfine selection in Mims ENDOR independent of deadtime. <i>Chemical Physics Letters</i> , 1997, 269, 208-214 Mentification of the CO-Binding Cluster in Nitrogenase MoFe Protein by ENDOR of 57Fe Isotopomers. <i>Journal of the American Chemical Society</i> , 1996, 118, 8707-8709 Investigation of the Dinuclear Fe Center of Methane Monooxygenase by Advanced Paramagnetic Resonance Techniques: On the Geometry of DMSO Binding. <i>Journal of the American Chemical Society</i> , 1996, 118, 121-134 Reconsideration of X, the Diiron Intermediate Formed during Cofactor Assembly in E. coli Ribonucleotide Reductase. <i>Journal of the American Chemical Society</i> , 1996, 118, 7551-7557 gemini-Porphyrazines: The Synthesis and Characterization of Metal-Capped cis- and trans-Porphyrazine Tetrathiolates. <i>Journal of the American Chemical Society</i> , 1996, 118, 10487-10493 Insights into the Role of Nickel in Hydrogenase. <i>Advances in Chemistry Series</i> , 1996, 21-60 Q-Band Pulsed Electron Spin-Echo Spectrometer and Its Application to ENDOR and ESEEM. <i>Journal of Magnetic Resonance Series A</i> , 1996, 119, 38-44 Ferromagnetism in a New Structural, Pha	Cytochrome c: Probing the Two-Domain Binding and Reactivity of the Peroxidase. Journal of the American Chemical Society, 1997, 119, 269-277 CO Binding to the FeMo Cofactor of CO-Inhibited Nitrogenase: 13CO and 1H Q-Band ENDOR Investigation. Journal of the American Chemical Society, 1997, 119, 10121-10126 Metal-Ion Valencies of the FeMo Cofactor in CO-Inhibited and Resting State Nitrogenase by 57Fe Q-Band ENDOR. Journal of the American Chemical Society, 1997, 119, 11395-11400 Structure of the Modified Heme in allylbenzene-inactivated Chloroperoxidase Determined by Q-Band CW and Pulsed ENDOR. Journal of the American Chemical Society, 1997, 119, 4059-4069 Enantiomerically Pure Winged!Spirane Porphyrazinoctaols. Angewandte Chemie International Edition in English, 1997, 36, 760-761 Enantiomerenreine schaufelradartige Spiro-Porphyrazinoctaolderivate. Angewandte Chemie, 1997, 109, 806-807 Making hyperfine selection in Mims ENDOR independent of deadtime. Chemical Physics Letters, 1997, 269, 208-214 Identification of the CO-Binding Cluster in Nitrogenase MoFe Protein by ENDOR of 57Fe Isotopomers. Journal of the American Chemical Society, 1996, 118, 8707-8709 Investigation of the Dinuclear Fe Center of Methane Monooxygenase by Advanced Paramagnetic Resonance Techniques: On the Geometry of DMSO Binding. Journal of the American Chemical Society, 1996, 118, 121-134 Reconsideration of X, the Diiron Intermediate Formed during Cofactor Assembly in E. coli Ribonucleotide Reductase. Journal of the American Chemical Society, 1996, 118, 10487-10493 Insights into the Role of Nickel in Hydrogenase. Advances in Chemistry Series, 1996, 21-60 Q-Band Pulsed Electron Spin-Echo Spectrometer and Its Application to ENDOR and ESEEM. Journal of Magnetic Resonance Series A, 1996, 119, 38-44 Ferromagnetism in a New Structural, Phase of [Fe(CSMeS)2] [TCNQ]. Molecular Crystals and Liquid Crystals, 1995, 273, 17-20 Compound ES of Cytochrome c Peroxidase Contains a Trp. piCation Radical: Characterization by Continuous Wave and Pulsed

33	Interaction of Tl+ and Cs+ with the [Fe3S4] Cluster of Pyrococcus furiosus Ferredoxin: Investigation by Resonance Raman, MCD, EPR, and ENDOR Spectroscopy. <i>Journal of the American Chemical Society</i> , 1994 , 116, 5722-5729	16.4	23
32	Detection of two histidyl ligands to CuA of cytochrome oxidase by 35-GHz ENDOR. 14,15N and 63,65Cu ENDOR studies of the CuA site in bovine heart cytochrome aa3 and cytochromes caa3 and ba3 from Thermus thermophilus. <i>Journal of the American Chemical Society</i> , 1993 , 115, 10888-10894	16.4	62
31	Metalloenzyme Active-Site Structure and Function through Multifrequency CW and Pulsed ENDOR. Biological Magnetic Resonance, 1993 , 151-218	0.5	92
30	Single-crystal EPR and ENDOR study of nitrogenase from clostridium pasteurianum. <i>Journal of Magnetic Resonance</i> , 1991 , 91, 227-240		2
29	Electron nuclear double resonance (ENDOR) of metalloenzymes. <i>Accounts of Chemical Research</i> , 1991 , 24, 164-170	24.3	117
28	Characterization of the Ni-Fe-C complex formed by reaction of carbon monoxide with the carbon monoxide dehydrogenase from Clostridium thermoaceticum by Q-band ENDOR. <i>Biochemistry</i> , 1991 , 30, 431-5	3.2	93
27	Ligand spin densities in blue copper proteins by q-band proton and nitrogen-14 ENDOR spectroscopy. <i>Journal of the American Chemical Society</i> , 1991 , 113, 1533-1538	16.4	182
26	Long-Range Electron Transfer Within Mixed-Metal Hemoglobin Hybrids. <i>Advances in Chemistry Series</i> , 1991 , 201-213		9
25	17O, 1H, and 2H electron nuclear double resonance characterization of solvent, substrate, and inhibitor binding to the [4Fe-4S]+ cluster of aconitase. <i>Biochemistry</i> , 1990 , 29, 10526-32	3.2	74
24	Comparison of wild-type and nifV mutant molybdenum-iron proteins of nitrogenase from Klebsiella pneumoniae by ENDOR spectroscopy. <i>Journal of the American Chemical Society</i> , 1990 , 112, 651-657	16.4	36
23	Detection of a new signal in the ESR spectrum of vanadium nitrogenase from Azotobacter vinelandii. <i>Journal of the American Chemical Society</i> , 1989 , 111, 8519-8520	16.4	39
22	Energetics and Dynamics of Gated Reactions. Advances in Chemistry Series, 1989, 125-146		9
21	ELECTRON NUCLEAR DOUBLE RESONANCE (ENDOR) OF METALLOENZYMES 1989 , 541-591		27
20	Iron-57 hyperfine coupling tensors of the FeMo cluster in Azotobacter vinelandii MoFe protein: determination by polycrystalline ENDOR spectroscopy. <i>Journal of the American Chemical Society</i> , 1988 , 110, 1935-1943	16.4	71
19	Evidence for N coordination to Fe in the [2Fe-2S] center in yeast mitochondrial complex III. Comparison with similar findings for analogous bacterial [2Fe-2S] proteins. <i>FEBS Letters</i> , 1987 , 214, 117	- <u>3</u> :8	57
18	ENDOR of the resting state of nitrogenase molybdenum-iron proteins from Azotobacter vinelandii, Klebsiella pneumoniae, and Clostridium pasteurianum. Proton, iron-57, molybdenum-95, and sulfur-33 studies. <i>Journal of the American Chemical Society</i> , 1986 , 108, 3487-3498	16.4	92
17	Porphyrinic Molecular Metals. <i>Molecular Crystals and Liquid Crystals</i> , 1985 , 125, 1-11		28
16	General theory of polycrystalline ENDOR patterns. g and hyperfine tensors of arbitrary symmetry and relative orientation. <i>Journal of Magnetic Resonance</i> , 1984 , 59, 110-123		16

15	Carrier Properties of Porphyrinic Molecular Metals. <i>Molecular Crystals and Liquid Crystals</i> , 1982 , 81, 231	-242	13
14	Molybdenum-95 and proton ENDOR spectroscopy of the nitrogenase molybdenum-iron protein. <i>Journal of the American Chemical Society</i> , 1982 , 104, 860-862	16.4	55
13	Evidence Regarding Mechanisms for Protein Control of Heme Reactivity. <i>Advances in Chemistry Series</i> , 1980 , 235-252		
12	14N, 1H, and metal ENDOR of single crystal Ag(II)(TPP) and Cu(II)(TPP). <i>Molecular Physics</i> , 1980 , 39, 107	′3 <u>11</u> /109	114
11	Griffith model bonding in dioxygen complexes of manganese porphyrins. <i>Journal of the American Chemical Society</i> , 1980 , 102, 4602-4609	16.4	21
10	Versatile four-probe ac conductivity measurement system. <i>Review of Scientific Instruments</i> , 1979 , 50, 263	1.7	18
9	Jahn-Teller effects in metalloporphyrins and other four-fold symmetric systems. <i>Molecular Physics</i> , 1978 , 35, 901-925	1.7	37
8	The dioxygen adducts of several manganese(II) porphyrins. Electron paramagnetic resonance studies. <i>Journal of the American Chemical Society</i> , 1978 , 100, 7253-7259	16.4	46
7	The dioxygen adduct of meso-tetraphenylporphyrinmanganese(II), a synthetic oxygen carrier. <i>Journal of the American Chemical Society</i> , 1976 , 98, 5473-82	16.4	104
6	Tumbling of an adsorbed nitroxide using rapid adiabatic passage. <i>The Journal of Physical Chemistry</i> , 1976 , 80, 842-846		25
5	Letter: Synthetic oxygen carrier. A dioxygen adduct of a manganese porphyrin. <i>Journal of the American Chemical Society</i> , 1975 , 97, 5278-80	16.4	62
4	Nitrogen-14 and oxygen-17 hyperfine interactions in perturbed nitroxides. <i>The Journal of Physical Chemistry</i> , 1974 , 78, 1313-1321		29
3	Triplet Exciton EPR and Crystal Structure of [TMPD+]2[Ni(mnt)2]\(\bar{\mathbb{Q}}\). Journal of Chemical Physics, 1972 , 56, 3490-3502	3.9	56
2	Structure of Nitric Oxide Adsorbed on 4A Molecular Sieve. <i>Journal of Chemical Physics</i> , 1969 , 50, 2598-7	2693	28
1	A New Reaction for Improved Calibration of EPR Rapid-Freeze Quench Times: Kinetics of Ethylene Diamine Tetraacetate (EDTA) Transfer from Calcium(II) to Copper(II). <i>Applied Magnetic Resonance</i> ,1	0.8	