Chan Eon Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3879945/publications.pdf Version: 2024-02-01

CHAN FON DADK

#	Article	IF	CITATIONS
1	Effect of Selenophene in a DPP Copolymer Incorporating a Vinyl Group for Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Materials, 2013, 25, 524-528.	21.0	230
2	High-Field-Effect Mobility of Low-Crystallinity Conjugated Polymers with Localized Aggregates. Journal of the American Chemical Society, 2016, 138, 8096-8103.	13.7	217
3	Al ₂ O ₃ /TiO ₂ Nanolaminate Thin Film Encapsulation for Organic Thin Film Transistors via Plasma-Enhanced Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2014, 6, 6731-6738.	8.0	180
4	Benzotriazole-Containing Planar Conjugated Polymers with Noncovalent Conformational Locks for Thermally Stable and Efficient Polymer Field-Effect Transistors. Chemistry of Materials, 2014, 26, 2147-2154.	6.7	167
5	Highly Crystalline Soluble Acene Crystal Arrays for Organic Transistors: Mechanism of Crystal Growth During Dipâ€Coating. Advanced Functional Materials, 2012, 22, 1005-1014.	14.9	160
6	Hâ€Aggregation Strategy in the Design of Molecular Semiconductors for Highly Reliable Organic Thin Film Transistors. Advanced Functional Materials, 2011, 21, 1616-1623.	14.9	146
7	Complementary Absorbing Starâ€Shaped Small Molecules for the Preparation of Ternary Cascade Energy Structures in Organic Photovoltaic Cells. Advanced Functional Materials, 2013, 23, 1556-1565.	14.9	138
8	Bending-stress-driven phase transitions in pentacene thin films for flexible organic field-effect transistors. Applied Physics Letters, 2008, 92, .	3.3	124
9	Low-voltage pentacene field-effect transistors with ultrathin polymer gate dielectrics. Applied Physics Letters, 2006, 88, 173507.	3.3	123
10	Physicochemically Stable Polymerâ€Coupled Oxide Dielectrics for Multipurpose Organic Electronic Applications. Advanced Functional Materials, 2011, 21, 2198-2207.	14.9	97
11	Reduced Water Vapor Transmission Rate of Graphene Gas Barrier Films for Flexible Organic Field-Effect Transistors. ACS Nano, 2015, 9, 5818-5824.	14.6	93
12	Low-operating-voltage pentacene field-effect transistor with a high-dielectric-constant polymeric gate dielectric. Applied Physics Letters, 2006, 89, 183516.	3.3	90
13	Surface Modification of CdSe Quantum-Dot Floating Gates for Advancing Light-Erasable Organic Field-Effect Transistor Memories. ACS Nano, 2018, 12, 7701-7709.	14.6	89
14	Alkyl Chain Length Dependence of the Field-Effect Mobility in Novel Anthracene Derivatives. ACS Applied Materials & Interfaces, 2015, 7, 351-358.	8.0	80
15	Photoinduced Recovery of Organic Transistor Memories with Photoactive Floating-Gate Interlayers. ACS Applied Materials & Interfaces, 2017, 9, 11759-11769.	8.0	80
16	Reducing the contact resistance in organic thin-film transistors by introducing a PEDOT:PSS hole-injection layer. Organic Electronics, 2008, 9, 864-868.	2.6	79
17	Effects of direct solvent exposure on the nanoscale morphologies and electrical characteristics of PCBM-based transistors and photovoltaics. Journal of Materials Chemistry, 2012, 22, 5543.	6.7	79
18	Solvent Additive to Achieve Highly Ordered Nanostructural Semicrystalline DPP Copolymers: Toward a High Charge Carrier Mobility. Advanced Materials, 2013, 25, 7003-7009.	21.0	71

#	Article	IF	CITATIONS
19	Effect of the hydrophobicity and thickness of polymer gate dielectrics on the hysteresis behavior of pentacene-based field-effect transistors. Journal of Applied Physics, 2009, 105, .	2.5	69
20	High <i>T</i> _g Cyclic Olefin Copolymer Gate Dielectrics for <i>N</i> , <i>N</i> ′â€Ditridecyl Perylene Diimide Based Fieldâ€Effect Transistors: Improving Performance and Stability with Thermal Treatment. Advanced Functional Materials, 2010, 20, 2611-2618.	14.9	69
21	The Origin of Excellent Gateâ€Bias Stress Stability in Organic Fieldâ€Effect Transistors Employing Fluorinatedâ€Polymer Gate Dielectrics. Advanced Materials, 2014, 26, 7241-7246.	21.0	68
	High Performance Amorphous Polymeric Thin-Film Transistors Based on		

#	Article	IF	CITATIONS
37	Photo-Patternable ZnO Thin Films Based on Cross-Linked Zinc Acrylate for Organic/Inorganic Hybrid Complementary Inverters. ACS Applied Materials & Interfaces, 2016, 8, 5499-5508.	8.0	45
38	Highly thermally stable non-fullerene organic solar cells: p-DTS(FBTTh2)2:P(NDI2OD-T2) bulk heterojunction. Nano Energy, 2015, 15, 343-352.	16.0	44
39	Over 10% efficiency in single-junction polymer solar cells developed from easily accessible random terpolymers. Nano Energy, 2017, 39, 229-237.	16.0	44
40	Impact of the Crystalline Packing Structures on Charge Transport and Recombination via Alkyl Chain Tunability of DPP-Based Small Molecules in Bulk Heterojunction Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 12940-12950.	8.0	43
41	High-performance solution-processed triisopropylsilylethynyl pentacene transistors and inverters fabricated by using the selective self-organization technique. Applied Physics Letters, 2008, 93, .	3.3	41
42	3,6-Carbazole Incorporated into Poly[9,9-dioctylfluorene- <i>alt</i> -(bisthienyl)benzothiadiazole]s Improving the Power Conversion Efficiency. Macromolecules, 2012, 45, 3004-3009.	4.8	41
43	Al2O3/TiO2 nanolaminate gate dielectric films with enhanced electrical performances for organic field-effect transistors. Organic Electronics, 2016, 28, 139-146.	2.6	41
44	Synthesis and characterization of poly(benzodithiophene) derivative for organic thin film transistors. Journal of Polymer Science Part A, 2007, 45, 5277-5284.	2.3	40
45	Hysteresis-free organic field-effect transistors and inverters using photocrosslinkable poly(vinyl) Tj ETQq1 1 0.78	43] <u>4</u> rgB ⁻	「/Qverlock 1(
46	Synthesis and Transistor Properties of Asymmetric Oligothiophenes: Relationship between Molecular Structure and Device Performance. Chemistry - A European Journal, 2013, 19, 14052-14060.	3.3	39
47	Photocurable polymer gate dielectrics for cylindrical organic field-effect transistors with high bending stability. Journal of Materials Chemistry, 2012, 22, 1054-1060.	6.7	38
48	Optimization of Al ₂ O ₃ /TiO ₂ nanolaminate thin films prepared with different oxide ratios, for use in organic light-emitting diode encapsulation, via plasma-enhanced atomic layer deposition. Physical Chemistry Chemical Physics, 2016, 18, 1042-1049.	2.8	38
49	Facile and Microcontrolled Blade Coating of Organic Semiconductor Blends for Uniaxial Crystal Alignment and Reliable Flexible Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2019, 11, 13481-13490.	8.0	38
50	A Mechanistic Understanding of a Binary Additive System to Synergistically Boost Efficiency in All-Polymer Solar Cells. Scientific Reports, 2015, 5, 18024.	3.3	37
51	Highly stable fluorine-rich polymer treated dielectric surface for the preparation of solution-processed organic field-effect transistors. Journal of Materials Chemistry C, 2013, 1, 1272-1278.	5.5	36
52	Inorganic/organic multilayer passivation incorporating alternating stacks of organic/inorganic multilayers for long-term air-stable organic light-emitting diodes. Organic Electronics, 2013, 14, 3385-3391.	2.6	36
53	Thermally Evaporated SiO Thin Films As a Versatile Interlayer for Plasma-Based OLED Passivation. ACS Applied Materials & Interfaces, 2012, 4, 3247-3253.	8.0	35
54	High-Performance Organic Complementary Inverters Using Monolayer Graphene Electrodes. ACS Applied Materials & Interfaces, 2014, 6, 6816-6824.	8.0	35

#	Article	IF	CITATIONS
55	Grafting Fluorinated Polymer Nanolayer for Advancing the Electrical Stability of Organic Field-Effect Transistors. Chemistry of Materials, 2014, 26, 6467-6476.	6.7	34
56	A high-performance solution-processed small molecule: alkylselenophene-substituted benzodithiophene organic solar cell. Journal of Materials Chemistry C, 2014, 2, 4937-4946.	5.5	34
57	The effect of branched versus linear alkyl side chains on the bulk heterojunction photovoltaic performance of small molecules containing both benzodithiophene and thienopyrroledione. Physical Chemistry Chemical Physics, 2014, 16, 19874-19883.	2.8	34
58	Damage-free hybrid encapsulation of organic field-effect transistors to reduce environmental instability. Journal of Materials Chemistry, 2012, 22, 7731.	6.7	33
59	New amorphous semiconducting copolymers containing fluorene and thiophene moieties for organic thin-film transistors. Journal of Materials Chemistry, 2008, 18, 1895.	6.7	32
60	High-Performance Triethylsilylethynyl Anthradithiophene Transistors Prepared without Solvent Vapor Annealing: The Effects of Self-Assembly during Dip-Coating. ACS Applied Materials & Interfaces, 2013, 5, 2146-2154.	8.0	32
61	A composite of a graphene oxide derivative as a novel sensing layer in an organic field-effect transistor. Journal of Materials Chemistry C, 2014, 2, 4539-4544.	5.5	32
62	Universal selection rule for surfactants used in miniemulsion processes for eco-friendly and high performance polymer semiconductors. Energy and Environmental Science, 2017, 10, 2324-2333.	30.8	32
63	Solvent-free solution processed passivation layer for improved long-term stability of organic field-effect transistors. Journal of Materials Chemistry, 2011, 21, 775-780.	6.7	30
64	Thin-film passivation by atomic layer deposition for organic field-effect transistors. Applied Physics Letters, 2008, 93, 163304.	3.3	29
65	Highly-impermeable Al2O3/HfO2 moisture barrier films grown by low-temperature plasma-enhanced atomic layer deposition. Organic Electronics, 2017, 50, 296-303.	2.6	29
66	All-Small-Molecule Solar Cells Incorporating NDI-Based Acceptors: Synthesis and Full Characterization. ACS Applied Materials & amp; Interfaces, 2017, 9, 44667-44677.	8.0	29
67	High Tg cyclic olefin copolymer/Al2O3 bilayer gate dielectrics for flexible organic complementary circuits with low-voltage and air-stable operation. Journal of Materials Chemistry, 2011, 21, 12542.	6.7	28
68	Ambipolar thin-film transistors and an inverter based on pentacene/self-assembled monolayer modified ZnO hybrid structures for balanced hole and electron mobilities. Organic Electronics, 2011, 12, 411-418.	2.6	28
69	Printable Ultraâ€Flexible Fluorinated Organic–Inorganic Nanohybrid Sol–Gel Derived Gate Dielectrics for Highly Stable Organic Thinâ€Film Transistors and Other Practical Applications. Advanced Functional Materials, 2021, 31, 2009539.	14.9	27
70	Solutionâ€Processed Organic Photovoltaic Cells with Anthracene Derivatives. ChemSusChem, 2010, 3, 742-748.	6.8	26
71	DTBDT-TTPD: a new dithienobenzodithiophene-based small molecule for use in efficient photovoltaic devices. Journal of Materials Chemistry A, 2014, 2, 16443-16451.	10.3	25
72	Directly drawn ZnO semiconductors and MWCNT/PSS electrodes via electrohydrodynamic jet printing for use in thin-film transistors: The ideal combination for reliable device performances. Organic Electronics, 2016, 39, 272-278.	2.6	25

#	Article	IF	CITATIONS
73	Synthesis and characterization of a new ethynylâ€linked alternating anthracene/fluorene copolymer for organic thin film transistor. Journal of Polymer Science Part A, 2009, 47, 1609-1616.	2.3	24
74	Self-organizing properties of triethylsilylethynyl-anthradithiophene on monolayer graphene electrodes in solution-processed transistors. Nanoscale, 2013, 5, 11094.	5.6	24
75	Fabrication of high-performance composite electrodes composed of multiwalled carbon nanotubes and glycerol-doped poly(3,4-ethylenedioxythiophene):polystyrene sulfonate for use in organic devices. Journal of Materials Chemistry C, 2015, 3, 7325-7335.	5.5	24
76	Unified film patterning and annealing of an organic semiconductor with micro-grooved wet stamps. Journal of Materials Chemistry C, 2016, 4, 6996-7003.	5.5	24
77	Non-lithographic direct patterning of carbon nanomaterial electrodes via electrohydrodynamic-printed wettability patterns by polymer brush for fabrication of organic field-effect transistor. Applied Surface Science, 2020, 515, 145989.	6.1	24
78	β-Phase formation in poly(9,9-di-n-octylfluorene) by incorporating an ambipolar unit containing phenothiazine and 4-(dicyanomethylene)-2-methyl-6-[p-(dimethylamino)styryl]-4H-pyran. Journal of Materials Chemistry, 2009, 19, 7062.	6.7	23
79	Optimization of electrohydrodynamic-printed organic electrodes for bottom-contact organic thin film transistors. Organic Electronics, 2016, 38, 48-54.	2.6	23
80	Photo-patternable high-k ZrOx dielectrics prepared using zirconium acrylate for low-voltage-operating organic complementary inverters. Organic Electronics, 2016, 33, 40-47.	2.6	23
81	Newly Synthesized Nonvacuum Processed Highâ€k Polymeric Dielectrics with Carboxyl Functionality for Highly Stable Operating Printed Transistor Applications. Advanced Functional Materials, 2021, 31, 2007304.	14.9	23
82	Enhanced Electrical Percolation Due to Interconnection of Three-Dimensional Pentacene Islands in Thin Films on Low Surface Energy Polyimide Gate Dielectrics. Journal of Physical Chemistry B, 2006, 110, 20302-20307.	2.6	22
83	The influence of electron deficient unit and interdigitated packing shape of new polythiophene derivatives on organic thinâ€film transistors and photovoltaic cells. Journal of Polymer Science Part A, 2011, 49, 2886-2898.	2.3	22
84	Vacuum thermally evaporated polymeric zinc acrylate as an organic interlayer of organic/inorganic multilayer passivation for flexible organic thin-film transistors. Journal of Materials Chemistry, 2012, 22, 25395.	6.7	22
85	A New BDT-Based Conjugated Polymer with Donor-Donor Composition for Bulk Heterojunction Solar Cells. Macromolecular Research, 2016, 24, 457-462.	2.4	22
86	Simultaneously Grasping and Selfâ€Organizing Photoactive Polymers for Highly Reproducible Organic Solar Cells with Improved Efficiency. Advanced Energy Materials, 2013, 3, 1018-1024.	19.5	21
87	Molecular aggregation–performance relationship in the design of novel cyclohexylethynyl end-capped quaterthiophenes for solution-processed organic transistors. Dyes and Pigments, 2013, 96, 756-762.	3.7	21
88	Polymer–nanocrystal hybrid photodetectors with planar heterojunctions designed strategically to yield a high photoconductive gain. Applied Physics Letters, 2013, 102, 193306.	3.3	21
89	Effective Way To Enhance the Electrode Performance of Multiwall Carbon Nanotube and Poly(3,4-ethylenedioxythiophene): Poly(styrene sulfonate) Composite Using HCl–Methanol Treatment. Journal of Physical Chemistry C, 2016, 120, 10919-10926.	3.1	21
90	Understanding Structure–Property Relationships in All-Small-Molecule Solar Cells Incorporating a Fullerene or Nonfullerene Acceptor. ACS Applied Materials & Interfaces, 2018, 10, 36037-36046.	8.0	21

#	Article	IF	CITATIONS
91	Improved n-type bottom-contact organic transistors by introducing a poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate) coating on the source/drain electrodes. Applied Physics Letters, 2010, 97, 103304.	3.3	20
92	Dithienobenzodithiophene-Based Small Molecule Organic Solar Cells with over 7% Efficiency via Additive- and Thermal-Annealing-Free Processing. ACS Applied Materials & Interfaces, 2016, 8, 34353-34359.	8.0	20
93	Strategy for Selective Printing of Gate Insulators Customized for Practical Application in Organic Integrated Devices. ACS Applied Materials & Interfaces, 2021, 13, 1043-1056.	8.0	20
94	Organic thin-film transistor properties and the structural relationships between various aromatic end-capped triisopropylsilylethynyl anthracene derivatives. Organic Electronics, 2010, 11, 820-830.	2.6	19
95	Lowâ€bandgap quinoxalineâ€based D–Aâ€ŧype copolymers: Synthesis, characterization, and photovoltaic properties. Journal of Polymer Science Part A, 2013, 51, 372-382.	2.3	19
96	3D Hollow Framework Silver Nanowire Electrodes for High-Performance Bottom-Contact Organic Transistors. ACS Applied Materials & amp; Interfaces, 2015, 7, 14272-14278.	8.0	19
97	Realization of electrically stable organic field-effect transistors using simple polymer blended dielectrics. Organic Electronics, 2015, 21, 111-116.	2.6	19
98	Effect of lateral confinement on crystallization behavior of a small-molecule semiconductor during capillary force lithography for use in high-performance OFETs. Journal of Industrial and Engineering Chemistry, 2019, 75, 187-193.	5.8	19
99	Comparison of semiconductor growth and charge transport on hydrophobic polymer dielectrics of organic field-effect transistors: Cytop vs. polystyrene. Organic Electronics, 2020, 77, 105485.	2.6	19
100	Thin Film Morphology Control via a Mixed Solvent System for High-Performance Organic Thin Film Transistors. Science of Advanced Materials, 2013, 5, 1323-1327.	0.7	19
101	Effects of Alkyl Chain Length on the Optoelectronic Properties and Performance of Pyrrolo-Perylene Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 8859-8867.	8.0	18
102	Evaluation of the weld-line strength of thermoplastics by compact tension test. Polymer Engineering and Science, 1997, 37, 1217-1225.	3.1	17
103	Small asymmetric anthracene–thiophene compounds as organic thin-film transistors. Tetrahedron, 2013, 69, 8191-8198.	1.9	17
104	Directionally Aligned Amorphous Polymer Chains via Electrohydrodynamic-Jet Printing: Analysis of Morphology and Polymer Field-Effect Transistor Characteristics. ACS Applied Materials & Interfaces, 2017, 9, 39493-39501.	8.0	17
105	Highly stable flexible organic field-effect transistors with Parylene-C gate dielectrics on a flexible substrate. Organic Electronics, 2019, 75, 105391.	2.6	17
106	Slot-die coating of sol–gel-based organic–inorganic nanohybrid dielectric layers for flexible and large-area organic thin film transistors. Applied Surface Science, 2020, 529, 147198.	6.1	17
107	All-organic solution-processed two-terminal transistors fabricated using the photoinduced p-channels. Applied Physics Letters, 2009, 94, 043303.	3.3	16
108	Synthesis and characterization of a fluorinated oligosiloxane-containing encapsulation material for organic field-effect transistors, prepared via a non-hydrolytic sol–gel process. Organic Electronics, 2012, 13, 2786-2792.	2.6	16

#	Article	IF	CITATIONS
109	The effects of organic material-treated SiO ₂ dielectric surfaces on the electrical characteristics of inorganic amorphous In-Ga-Zn-O thin film transistors. Applied Physics Letters, 2012, 100, 102110.	3.3	16
110	Fluorinated polymer-grafted organic dielectrics for organic field-effect transistors with low-voltage and electrical stability. Physical Chemistry Chemical Physics, 2015, 17, 16791-16797.	2.8	16
111	Molecular design and ordering effects of alkoxy aromatic donor in a DPP copolymer on OTFTs and OPVs. Materials Chemistry and Physics, 2015, 153, 63-71.	4.0	16
112	Dramatically enhanced performances and ideally controlled nano-morphology via co-solvent processing in low bandgap polymer solar cells. Organic Electronics, 2016, 34, 42-49.	2.6	16
113	Complementary photo and temperature cured polymer dielectrics with high-quality dielectric properties for organic semiconductors. Journal of Materials Chemistry, 2012, 22, 19940.	6.7	15
114	High-speed solution-processed organic single crystal transistors using a novel triisopropylsilylethynyl anthracene derivative. Applied Physics Letters, 2012, 101, .	3.3	14
115	A side chain-modified quaterthiophene derivative for enhancing the performance of organic solar cell devices. Journal of Materials Chemistry, 2012, 22, 15141.	6.7	14
116	A push–pull organic semiconductor with efficient intramolecular charge transfer for solution-processed small molecule solar cells. RSC Advances, 2015, 5, 3435-3442.	3.6	14
117	Two dibenzo[Def, Mno]chryseneâ€based polymeric semiconductors: Surprisingly opposite device performances in fieldâ€effect transistors and solar cells. Journal of Polymer Science Part A, 2016, 54, 2559-2570.	2.3	14
118	A critical role of amphiphilic polymers in organic–inorganic hybrid sol–gel derived gate dielectrics for flexible organic thin-film transistors. Journal of Materials Chemistry C, 2019, 7, 11612-11620.	5.5	14
119	Synthesis and characterization of naphtho[2,1-b:3,4-bâ€2]dithiophene-based polymers with extended Ï€-conjugation systems for use in bulk heterojunction polymer solar cells. Journal of Polymer Science Part A, 2013, 51, 4742-4751.	2.3	13
120	A potential naphtho[2,1-b:3,4-b′]dithiophene-based polymer with large open circuit voltage for efficient use in organic solar cells. Journal of Materials Chemistry C, 2015, 3, 1904-1912.	5.5	13
121	Effect of the length of a symmetric branched side chain on charge transport in thienoisoindigo-based polymer field-effect transistors. Organic Electronics, 2019, 65, 251-258.	2.6	13
122	Direct Printing of Asymmetric Electrodes for Improving Charge Injection/Extraction in Organic Electronics. ACS Applied Materials & Interfaces, 2020, 12, 33999-34010.	8.0	13
123	The Hidden Potential of Polysilsesquioxane for Highâ€ <i>k</i> : Analysis of the Origin of its Dielectric Nature and Practical Lowâ€Voltageâ€Operating Applications beyond the Unit Device. Advanced Functional Materials, 2022, 32, 2104030.	14.9	13
124	Novel alkoxyanthracene donor and benzothiadiazole acceptor for organic thin film transistor and bulk heterojunction organic photovoltaic cells. Journal of Polymer Science Part A, 2014, 52, 1306-1314.	2.3	12
125	Reduced water vapor transmission rates of low-temperature-processed and sol-gel-derived titanium oxide thin films on flexible substrates. Organic Electronics, 2016, 36, 133-139.	2.6	12
126	(Poly(3,4-ethylenedioxythiophene):Polystyrene Sulfonate):Polytetrafluoroethylene for Use in High-Performance and Stable Bottom-Contact Organic Field-Effect Transistors. Journal of Physical Chemistry C, 2016, 120, 956-962.	3.1	12

#	Article	IF	CITATIONS
127	Synthesis of donor–acceptor copolymer using benzoselenadiazole as acceptor for OTFT. RSC Advances, 2016, 6, 4070-4076.	3.6	12
128	Following the nanostructural molecular orientation guidelines for sulfur versus thiophene units in small molecule photovoltaic cells. Nanoscale, 2016, 8, 7654-7662.	5.6	12
129	The impact of P(NDI2OD-T2) crystalline domains on the open-circuit voltage of bilayer all-polymer solar cells with an inverted configuration. APL Materials, 2015, 3, 126105.	5.1	11
130	Solvent boiling point affects the crystalline properties and performances of anthradithiophene-based devices. Dyes and Pigments, 2015, 114, 60-68.	3.7	11
131	A novel small molecule based on dithienophosphole oxide for bulk heterojunction solar cells without pre- or post-treatments. Dyes and Pigments, 2017, 142, 516-523.	3.7	11
132	Surface modification with MK-2 organic dye in a ZnO/P3HT hybrid solar cell: Impact on device performance. APL Materials, 2014, 2, .	5.1	10
133	Synthesis, characterization, and transistor applications of new linear small molecules: Naphthyl-ethynyl-anthracene-based small molecules containing different alkyl end group. Dyes and Pigments, 2016, 131, 349-355.	3.7	10
134	Development of Organic Semiconductors Based on Quinacridone Derivatives for Organic Field-Effect Transistors: High-Voltage Logic Circuit Applications. IEEE Journal of the Electron Devices Society, 2017, 5, 209-213.	2.1	10
135	Anomalous Ambipolar Transport of Organic Semiconducting Crystals via Control of Molecular Packing Structures. ACS Applied Materials & Interfaces, 2017, 9, 27839-27846.	8.0	10
136	Thienothiophene-benzotriazole-based semicrystalline linear copolymers for organic field effect transistors. Pure and Applied Chemistry, 2014, 86, 1293-1302.	1.9	9
137	Structure–Property Correlation: A Comparison of Charge Carrier Kinetics and Recombination Dynamics in All-Polymer Solar Cells. Journal of Physical Chemistry C, 2015, 119, 26311-26318.	3.1	9
138	Accelerated lifetime test based on general electrical principles for light-emitting electrochemical cells. Organic Electronics, 2016, 34, 50-56.	2.6	9
139	New dithienophosphole-based donor–acceptor alternating copolymers: Synthesis and structure property relationships in OFET. Dyes and Pigments, 2016, 125, 316-322.	3.7	9
140	Morphology Driven by Molecular Structure of Thiazoleâ€Based Polymers for Use in Fieldâ€Effect Transistors and Solar Cells. Chemistry - A European Journal, 2019, 25, 649-656.	3.3	9
141	Effects of particle size on the molecular orientation and birefringence of magnetic nanoparticles/polyimide composites. Journal of Applied Polymer Science, 2006, 99, 3433-3440.	2.6	8
142	Schematic Studies on the Structural Properties and Device Physics of All Small Molecule Ternary Photovoltaic Cells. ACS Applied Materials & Interfaces, 2015, 7, 21423-21432.	8.0	8
143	Three-Dimensional Observation of a Light-Soaked Photoreactant Layer in BTR:PCBM Solar Cells Treated with/without Solvent Vapor Annealing. ACS Applied Materials & amp; Interfaces, 2018, 10, 21973-21984.	8.0	8
144	Thermal behavior and morphology of rubber-modified epoxies. Journal of Applied Polymer Science, 1993, 50, 1951-1957.	2.6	7

#	Article	IF	CITATIONS
145	In-Depth Consideration of Vertically 3D Microstructured Bulk Heterojunction Layers via Solvent Vapor Annealing in DR3TSBDT:PC ₇₁ BM Solar Cells. Journal of Physical Chemistry C, 2018, 122, 6514-6525.	3.1	6
146	Ambipolar charge transport of diketopyrrolepyrrole-silole-based copolymers and effect of side chain engineering: Compact model parameter extraction strategy for high-voltage logic applications. Organic Electronics, 2018, 54, 1-8.	2.6	6
147	Well defined double layers via binary solvent mixtures for highly efficient inverted all-polymer solar cells. Organic Electronics, 2018, 52, 301-308.	2.6	6
148	Parylene-based polymeric dielectric top-gate organic field-effect transistors exposed to a UV/ozone environment. Organic Electronics, 2020, 87, 105942.	2.6	6
149	Electrohydrodynamic-Jet-Printed Cinnamate-Fluorinated Cross-Linked Polymeric Dielectrics for Flexible and Electrically Stable Operating Organic Thin-Film Transistors and Integrated Devices. ACS Applied Materials & Interfaces, 2021, 13, 50149-50162.	8.0	6
150	Allâ€organic actuator fabricated with single wall carbon nanotube electrodes. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 2532-2538.	2.1	5
151	High performance semiconducting polymers containing bis(bithiophenyl dithienothiophene)â€based repeating groups for organic thin film transistors. Journal of Polymer Science Part A, 2011, 49, 55-64.	2.3	5
152	New donor-acceptor copolymer containing dialkoxy naphthalene and carbonylated thieno[3,4-b]thiophene for OTFT and OPV. Macromolecular Research, 2014, 22, 569-573.	2.4	5
153	Structure–Property Relationships: Asymmetric Alkylphenylâ€6ubstituted Anthracene Molecules for Use in Smallâ€Molecule Solar Cells. ChemSusChem, 2015, 8, 1548-1556.	6.8	5
154	Thermally Stable Dibenzo[def,mno]chryseneâ€Based Polymer Solar Cells: Effect of Thermal Annealing on the Morphology and Photovoltaic Performances. Macromolecular Chemistry and Physics, 2016, 217, 2116-2124.	2.2	5
155	Repurposing compact discs as master molds to fabricate high-performance organic nanowire field-effect transistors. Nanotechnology, 2017, 28, 205304.	2.6	5
156	Aceneâ€Modified Smallâ€Molecule Donors for Organic Photovoltaics. Chemistry - A European Journal, 2019, 25, 12316-12324.	3.3	5
157	Solution-Processed Flexible Gas Barrier Films for Organic Field-Effect Transistors. Macromolecular Research, 2020, 28, 782-788.	2.4	5
158	Effect of the physical and mechanical properties of epoxy resins on the adhesion behavior of epoxy/copper leadframe joints. Journal of Adhesion Science and Technology, 2001, 15, 439-456.	2.6	4
159	Morphological studies of small-molecule solar cells: nanostructural engineering via solvent vapor annealing treatments. Journal of Materials Science, 2017, 52, 13173-13182.	3.7	4
160	Enhanced chemical and physical properties of PEDOT doped with anionic polyelectrolytes prepared from acrylic derivatives and application to nanogenerators. Nanoscale Advances, 2019, 1, 4384-4392.	4.6	4
161	Directionally Patterned Large-Area Poly(3-hexylthiophene) Field-Effect Transistors via Flow-Blade Printing Method Using Coffee-Ring Effect: Uniform Performance Regardless of Pattern Fabrication Condition and Applications. ACS Applied Electronic Materials, 2021, 3, 385-394.	4.3	4
162	Facile method for the environmentally friendly fabrication of reduced graphene oxide films assisted by a metal substrate and saline solution. RSC Advances, 2013, 3, 14286.	3.6	3

#	Article	IF	CITATIONS
163	Isoindigo-based polymer photovoltaics: modifying polymer molecular structures to control the nanostructural packing motif. Physical Chemistry Chemical Physics, 2016, 18, 17957-17964.	2.8	3
164	Advanced Side-Impermeability Characteristics of Fluorinated Organic-Inorganic Nanohybrid Materials for Thin Film Encapsulation. Macromolecular Research, 2021, 29, 313-320.	2.4	3
165	Ï€-Conjugated Main Chain Polymers Containing Bis(bithiophenyl dithienothiophene)-based Repeating Group and their Application to Polymer Solar Cells. Molecular Crystals and Liquid Crystals, 2011, 538, 187-192.	0.9	2
166	Reduced water vapor transmission rates of low-temperature solution-processed metal oxide barrier films via ultraviolet annealing. Applied Surface Science, 2017, 414, 262-269.	6.1	2
167	Side chain engineering in DTBDT-based small molecules for efficient organic photovoltaics. Nanoscale, 2019, 11, 13845-13852.	5.6	2
168	ORGANIC FIELD-EFFECT TRANSISTORS: Physicochemically Stable Polymer-Coupled Oxide Dielectrics for Multipurpose Organic Electronic Applications (Adv. Funct. Mater. 12/2011). Advanced Functional Materials, 2011, 21, 2197-2197.	14.9	1
169	A Solution-Processed Cathode Interfacial Layer Facilitates Efficient Energy Level Alignment in Organic Photovoltaics. Journal of Physical Chemistry C, 2021, 125, 20067-20075.	3.1	1
170	Mass-Synthesized Solution-Processable Polyimide Gate Dielectrics for Electrically Stable Operating OFETs and Integrated Circuits. Polymers, 2021, 13, 3715.	4.5	1
171	Inside Cover: Polyaniline-Based Conducting Polymer Compositions with a High Work Function for Hole-Injection Layers in Organic Light-Emitting Diodes: Formation of Ohmic Contacts (ChemSusChem) Tj ETQq1	1 0. 88431	.4 ogBT /Ove
172	Organic Fieldâ€Effect Transistors: The Origin of Excellent Gateâ€Bias Stress Stability in Organic Fieldâ€Effect Transistors Employing Fluorinatedâ€Polymer Gate Dielectrics (Adv. Mater. 42/2014). Advanced Materials, 2014, 26, 7280-7280.	21.0	0
173	Nanowires: A Lattice-Strained Organic Single-Crystal Nanowire Array Fabricated via Solution-Phase Nanograting-Assisted Pattern Transfer for Use in High-Mobility Organic Field-Effect Transistors (Adv.) Tj ETQq1 1	0. 28.4 314	rgBT /Overlo
174	Markedly different molecular formation in DPP-based small-molecule solar cells probed by grazing-incidence wide-angle X-ray scattering. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2017, 73, 916-922.	1.1	0
175	Two BDT-TPP-Based Polymer Semiconductors: It's Characterization and Application for Photovoltaics. Journal of Nanoscience and Nanotechnology, 2017, 17, 5656-5661.	0.9	0
176	Aceneâ€Modified Smallâ€Molecule Donors for Organic Photovoltaics. Chemistry - A European Journal, 2019, 25, 12233-12233.	3.3	0