Victoria E Prince

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/387991/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zebrafish hox Clusters and Vertebrate Genome Evolution. , 1998, 282, 1711-1714.		1,551
2	Splitting pairs: the diverging fates of duplicated genes. Nature Reviews Genetics, 2002, 3, 827-837.	7.7	690
3	A new time-scale for ray-finned fish evolution. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 489-498.	1.2	298
4	Retinoic Acid Signaling Is Required for a Critical Early Step in Zebrafish Pancreatic Development. Current Biology, 2002, 12, 1215-1220.	1.8	278
5	Constructing the hindbrain: Insights from the zebrafish. Developmental Dynamics, 2002, 224, 1-17.	0.8	196
6	Blood Sugar Measurement in Zebrafish Reveals Dynamics of Glucose Homeostasis. Zebrafish, 2010, 7, 205-213.	0.5	172
7	Knockdown of duplicated zebrafish <i>hoxb1</i> genes reveals distinct roles in hindbrain patterning and a novel mechanism of duplicate gene retention. Development (Cambridge), 2002, 129, 2339-2354.	1.2	157
8	Zebrafish Hox Paralogue Group 2 Genes Function Redundantly as Selector Genes to Pattern the Second Pharyngeal Arch. Developmental Biology, 2002, 247, 367-389.	0.9	128
9	On the diabetic menu: Zebrafish as a model for pancreas development and function. BioEssays, 2009, 31, 139-152.	1.2	127
10	Intraperitoneal Injection into Adult Zebrafish. Journal of Visualized Experiments, 2010, , .	0.2	117
11	Consequences of Hox gene duplication in the vertebrates: an investigation of the zebrafish Hox paralogue group 1 genes. Development (Cambridge), 2001, 128, 2471-2484.	1.2	115
12	Retinoids signal directly to zebrafish endoderm to specify insulin-expressing β-cells. Development (Cambridge), 2006, 133, 949-956.	1.2	110
13	Plasticity in Zebrafish hox Expression in the Hindbrain and Cranial Neural Crest. Developmental Biology, 2001, 231, 201-216.	0.9	107
14	Rapid image deconvolution and multiview fusion for optical microscopy. Nature Biotechnology, 2020, 38, 1337-1346.	9.4	105
15	The Hox Paradox: More Complex(es) Than Imagined. Developmental Biology, 2002, 249, 1-15.	0.9	95
16	Zebrafish Hoxb1a regulates multiple downstream genes including prickle1b. Developmental Biology, 2007, 309, 358-372.	0.9	90
17	A conserved role for retinoid signaling in vertebrate pancreas development. Development Genes and Evolution, 2004, 214, 432-41.	0.4	89
18	Repression of the hindbrain developmental program by Cdx factors is required for the specification of the vertebrate spinal cord. Development (Cambridge), 2007, 134, 2147-2158.	1.2	75

VICTORIA E PRINCE

#	Article	IF	CITATIONS
19	In vitro processing and secretion of mutant insulin proteins that cause permanent neonatal diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E403-E410.	1.8	72
20	Zebrafish lunatic fringe demarcates segmental boundaries. Mechanisms of Development, 2001, 105, 175-180.	1.7	70
21	Zebrafish <i>mnx1</i> controls cell fate choice in the developing endocrine pancreas. Development (Cambridge), 2011, 138, 4597-4608.	1.2	67
22	Zic1 and Zic4 regulate zebrafish roof plate specification and hindbrain ventricle morphogenesis. Developmental Biology, 2008, 314, 376-392.	0.9	66
23	Current perspectives in zebrafish reverse genetics: Moving forward. Developmental Dynamics, 2008, 237, 861-882.	0.8	63
24	Neural crest development: insights from the zebrafish. Developmental Dynamics, 2020, 249, 88-111.	0.8	63
25	The autism susceptibility gene met regulates zebrafish cerebellar development and facial motor neuron migration. Developmental Biology, 2009, 335, 78-92.	0.9	62
26	Knockdown of duplicated zebrafish hoxb1 genes reveals distinct roles in hindbrain patterning and a novel mechanism of duplicate gene retention. Development (Cambridge), 2002, 129, 2339-54.	1.2	62
27	Hox gene expression reveals regionalization along the anteroposterior axis of the zebrafish notochord. Development Genes and Evolution, 1998, 208, 517-522.	0.4	61
28	Duplication events and the evolution of segmental identity. Evolution & Development, 2005, 7, 556-567.	1.1	61
29	Additional hox clusters in the zebrafish: divergent expression patterns belie equivalent activities of duplicate hoxB5 genes. Evolution & Development, 2001, 3, 127-144.	1.1	60
30	Zebrafish gcm2 is required for gill filament budding from pharyngeal ectoderm. Developmental Biology, 2004, 276, 508-522.	0.9	55
31	Heat shock produces periodic somitic disturbances in the zebrafish embryo. Mechanisms of Development, 1999, 85, 27-34.	1.7	52
32	Zebrafish Pancreas Development and Regeneration. Current Topics in Developmental Biology, 2017, 124, 235-276.	1.0	50
33	Prickle1b mediates interpretation of migratory cues during zebrafish facial branchiomotor neuron migration. Developmental Dynamics, 2010, 239, 1596-1608.	0.8	45
34	Cdx4 is required in the endoderm to localize the pancreas and limit \hat{l}^2 -cell number. Development (Cambridge), 2008, 135, 919-929.	1.2	44
35	Zebrafish Prickle1b mediates facial branchiomotor neuron migration via a farnesylation-dependent nuclear activity. Development (Cambridge), 2011, 138, 2121-2132.	1.2	43
36	Origin of the zebrafish endocrine and exocrine pancreas. Developmental Dynamics, 2007, 236, 1558-1569.	0.8	40

VICTORIA E PRINCE

#	Article	IF	CITATIONS
37	Hox Gene Misexpression and Cell-Specific Lesions Reveal Functionality of Homeotically Transformed Neurons. Journal of Neuroscience, 2004, 24, 3070-3076.	1.7	36
38	Evolutionary divergence of vertebrate Hoxb2 expression patterns and transcriptional regulatory loci. The Journal of Experimental Zoology, 2002, 294, 285-299.	1.4	35
39	Cloning and developmental expression of a zebrafish meis2 homeobox gene. Mechanisms of Development, 2001, 102, 247-250.	1.7	34
40	Cyp26 enzymes function in endoderm to regulate pancreatic field size. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7864-7869.	3.3	28
41	Zebrafish <i>rest</i> regulates developmental gene expression but not neurogenesis. Development (Cambridge), 2012, 139, 3838-3848.	1.2	28
42	Axon tracts guide zebrafish facial branchiomotor neuron migration through the hindbrain. Development (Cambridge), 2013, 140, 906-915.	1.2	28
43	spiel ohne grenzen/pou2is required for zebrafish hindbrain segmentation. Development (Cambridge), 2002, 129, 1645-1655.	1.2	28
44	Comparative genomic analysis of vertebrate Hox3 and Hox4 genes. The Journal of Experimental Zoology, 2004, 302B, 147-164.	1.4	24
45	Expression and retinoic acid regulation of the zebrafish <i>nr2f</i> orphan nuclear receptor genes. Developmental Dynamics, 2012, 241, 1603-1615.	0.8	24
46	Conserved co-regulation and promoter sharing of hoxb3a and hoxb4a in zebrafish. Developmental Biology, 2006, 297, 26-43.	0.9	23
47	Differential levels of Neurod establish zebrafish endocrine pancreas cell fates. Developmental Biology, 2015, 402, 81-97.	0.9	23
48	The fates of zebrafish Hox gene duplicates. Journal of Structural and Functional Genomics, 2003, 3, 185-194.	1.2	22
49	Multiple mechanisms mediate motor neuron migration in the zebrafish hindbrain. Developmental Neurobiology, 2010, 70, 87-99.	1.5	22
50	Prickle1 is required for EMT and migration of zebrafish cranial neural crest. Developmental Biology, 2019, 448, 16-35.	0.9	22
51	From head to tail: regionalization of the neural crest. Development (Cambridge), 2020, 147, .	1.2	22
52	Facial motor neuron migration advances. Current Opinion in Neurobiology, 2013, 23, 943-950.	2.0	19
53	Transgenic zebrafish model of the C43G human insulin gene mutation. Journal of Diabetes Investigation, 2013, 4, 157-167.	1.1	12
54	Conserved expression of Hoxa1 in neurons at the ventral forebrain/midbrain boundary of vertebrates. Development Genes and Evolution, 2003, 213, 399-406.	0.4	11

VICTORIA E PRINCE

#	Article	IF	CITATIONS
55	Consequences of <i>Hoxb1</i> duplication in teleost fish. Evolution & Development, 2007, 9, 540-554.	1.1	11
56	Model Organisms Inform the Search for the Genes and Developmental Pathology Underlying Malformations of the Human Hindbrain. Seminars in Pediatric Neurology, 2009, 16, 155-163.	1.0	9
57	Rest represses maturation within migrating facial branchiomotor neurons. Developmental Biology, 2015, 401, 220-235.	0.9	9
58	The fates of zebrafish Hox gene duplicates. Journal of Structural and Functional Genomics, 2003, 3, 185-94.	1.2	9
59	Hox Genes and Segmental Patterning of the Vertebrate Hindbrain. American Zoologist, 1998, 38, 634-646.	0.7	7
60	Zebrafish Cdx4 regulates neural crest cell specification and migratory behaviors in the posterior body. Developmental Biology, 2021, 480, 25-38.	0.9	5
61	Mnx1. Islets, 2012, 4, 320-322.	0.9	4
62	Midline morphogenesis of zebrafish foregut endoderm is dependent on Hoxb5b. Developmental Biology, 2021, 471, 1-9.	0.9	4
63	Development and migration of the zebrafish rhombencephalic octavolateral efferent neurons. Journal of Comparative Neurology, 2021, 529, 1293-1307.	0.9	4
64	Recent advances in pancreas development: from embryonic pathways to programming renewable sources of beta cells. F1000 Biology Reports, 2010, 2, 17.	4.0	2
65	A grand new view from the embryo. Development (Cambridge), 2005, 132, 5133-5135.	1.2	0
66	The fates of zebrafish Hox gene duplicates. , 2003, , 185-194.		0