Sjoerd H Hoogland ### List of Publications by Citations Source: https://exaly.com/author-pdf/3879710/sjoerd-h-hoogland-publications-by-citations.pdf Version: 2024-04-19 This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above. The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article. 146 papers 22,701 citations 61 h-index 150 g-index 152 ext. papers 25,795 ext. citations 17.1 avg, IF **6.59** L-index | # | Paper | IF | Citations | |-----|---|--------|-----------| | 146 | Solar cells. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. <i>Science</i> , 2015 , 347, 519-22 | 33.3 | 3307 | | 145 | Efficient and stable solution-processed planar perovskite solar cells via contact passivation. <i>Science</i> , 2017 , 355, 722-726 | 33.3 | 1667 | | 144 | Perovskite energy funnels for efficient light-emitting diodes. <i>Nature Nanotechnology</i> , 2016 , 11, 872-877 | 7 28.7 | 1484 | | 143 | Ultrasensitive solution-cast quantum dot photodetectors. <i>Nature</i> , 2006 , 442, 180-3 | 50.4 | 1442 | | 142 | Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. <i>Nature Materials</i> , 2011 , 10, 765-7 | 127 | 1206 | | 141 | Hybrid passivated colloidal quantum dot solids. <i>Nature Nanotechnology</i> , 2012 , 7, 577-82 | 28.7 | 993 | | 140 | Ligand-Stabilized Reduced-Dimensionality Perovskites. <i>Journal of the American Chemical Society</i> , 2016 , 138, 2649-55 | 16.4 | 889 | | 139 | Planar-integrated single-crystalline perovskite photodetectors. <i>Nature Communications</i> , 2015 , 6, 8724 | 17.4 | 497 | | 138 | Air-stable n-type colloidal quantum dot solids. <i>Nature Materials</i> , 2014 , 13, 822-8 | 27 | 466 | | 137 | Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dotßolids. <i>Nature Materials</i> , 2017 , 16, 258-263 | 27 | 432 | | 136 | Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. <i>Nature Nanotechnology</i> , 2009 , 4, 40-4 | 28.7 | 395 | | 135 | Quantum-dot-in-perovskite solids. <i>Nature</i> , 2015 , 523, 324-8 | 50.4 | 382 | | 134 | Tandem colloidal quantum dot solar cells employing a graded recombination layer. <i>Nature Photonics</i> , 2011 , 5, 480-484 | 33.9 | 336 | | 133 | Conformal organohalide perovskites enable lasing on spherical resonators. ACS Nano, 2014 , 8, 10947-52 | 216.7 | 290 | | 132 | Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. <i>Nature Nanotechnology</i> , 2020 , 15, 668-674 | 28.7 | 281 | | 131 | Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance. <i>Advanced Materials</i> , 2016 , 28, 299-304 | 24 | 279 | | 130 | 10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide
Passivation. <i>Nano Letters</i> , 2016 , 16, 4630-4 | 11.5 | 275 | | 129 | Amine-Free Synthesis of Cesium Lead Halide Perovskite Quantum Dots for Efficient Light-Emitting Diodes. <i>Advanced Functional Materials</i> , 2016 , 26, 8757-8763 | 15.6 | 265 | |-----|--|-----------------|-----| | 128 | Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. <i>Nature</i> , 2017 , 544, 75-79 | 50.4 | 225 | | 127 | Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics. ACS Nano, 2012, 6, 89 | -919 6.7 | 214 | | 126 | Two-Photon Absorption in Organometallic Bromide Perovskites. <i>ACS Nano</i> , 2015 , 9, 9340-6 | 16.7 | 208 | | 125 | Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. <i>Nature Photonics</i> , 2018 , 12, 159-164 | 33.9 | 206 | | 124 | Spin control in reduced-dimensional chiral perovskites. <i>Nature Photonics</i> , 2018 , 12, 528-533 | 33.9 | 205 | | 123 | DNA-based programming of quantum dot valency, self-assembly and luminescence. <i>Nature Nanotechnology</i> , 2011 , 6, 485-90 | 28.7 | 204 | | 122 | 2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids. <i>Nature Nanotechnology</i> , 2018 , 13, 456-462 | 28.7 | 196 | | 121 | Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime. <i>Nature Communications</i> , 2014 , 5, 3803 | 17.4 | 188 | | 120 | A charge-orbital balance picture of doping in colloidal quantum dot solids. ACS Nano, 2012, 6, 8448-55 | 16.7 | 183 | | 119 | All-inorganic colloidal quantum dot photovoltaics employing solution-phase halide passivation. <i>Advanced Materials</i> , 2012 , 24, 6295-9 | 24 | 179 | | 118 | High-Efficiency Colloidal Quantum Dot Photovoltaics via Robust Self-Assembled Monolayers. <i>Nano Letters</i> , 2015 , 15, 7691-6 | 11.5 | 175 | | 117 | Perovskite thin films via atomic layer deposition. Advanced Materials, 2015, 27, 53-8 | 24 | 171 | | 116 | Quantum junction solar cells. <i>Nano Letters</i> , 2012 , 12, 4889-94 | 11.5 | 169 | | 115 | N-type colloidal-quantum-dot solids for photovoltaics. <i>Advanced Materials</i> , 2012 , 24, 6181-5 | 24 | 165 | | 114 | Measuring charge carrier diffusion in coupled colloidal quantum dot solids. ACS Nano, 2013 , 7, 5282-90 | 16.7 | 163 | | 113 | The In-Gap Electronic State Spectrum of Methylammonium Lead Iodide Single-Crystal Perovskites. <i>Advanced Materials</i> , 2016 , 28, 3406-10 | 24 | 151 | | 112 | Graded doping for enhanced colloidal quantum dot photovoltaics. <i>Advanced Materials</i> , 2013 , 25, 1719-2 | 234 | 150 | | 111 | Lattice anchoring stabilizes solution-processed semiconductors. <i>Nature</i> , 2019 , 570, 96-101 | 50.4 | 149 | |-----|---|------|-----| | 110 | Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power. <i>Applied Physics Letters</i> , 2002 , 80, 3892-3894 | 3.4 | 148 | | 109 | Efficient Schottky-quantum-dot photovoltaics: The roles of depletion, drift, and diffusion. <i>Applied Physics Letters</i> , 2008 , 92, 122111 | 3.4 | 143 | | 108 | Efficient Biexciton Interaction in Perovskite Quantum Dots Under Weak and Strong Confinement. <i>ACS Nano</i> , 2016 , 10, 8603-9 | 16.7 | 142 | | 107 | Passively mode-locked diode-pumped surface-emitting semiconductor laser. <i>IEEE Photonics Technology Letters</i> , 2000 , 12, 1135-1137 | 2.2 | 129 | | 106 | Vertical-external-cavity semiconductor lasers. <i>Journal Physics D: Applied Physics</i> , 2004 , 37, R75-R85 | 3 | 121 | | 105 | Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems. <i>Nature Communications</i> , 2020 , 11, 1257 | 17.4 | 114 | | 104 | Mixed-quantum-dot solar cells. <i>Nature Communications</i> , 2017 , 8, 1325 | 17.4 | 113 | | 103 | Extended cavity surface-emitting semiconductor lasers. <i>Progress in Quantum Electronics</i> , 2006 , 30, 1-43 | 9.1 | 113 | | 102 | Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics. <i>Nature Communications</i> , 2020 , 11, 103 | 17.4 | 110 | | 101 | The donor-supply electrode enhances performance in colloidal quantum dot solar cells. <i>ACS Nano</i> , 2013 , 7, 6111-6 | 16.7 | 105 | | 100 | A solution-processed 1.53 mum quantum dot laser with temperature-invariant emission wavelength. <i>Optics Express</i> , 2006 , 14, 3273-81 | 3.3 | 103 | | 99 | Self-assembled, nanowire network electrodes for depleted bulk heterojunction solar cells. <i>Advanced Materials</i> , 2013 , 25, 1769-73 | 24 | 101 | | 98 | Double-Sided Junctions Enable High-Performance Colloidal-Quantum-Dot Photovoltaics. <i>Advanced Materials</i> , 2016 , 28, 4142-8 | 24 | 100 | | 97 | Chloride Passivation of ZnO Electrodes Improves Charge Extraction in Colloidal Quantum Dot Photovoltaics. <i>Advanced Materials</i> , 2017 , 29, 1702350 | 24 | 97 | | 96 | Interface Recombination in Depleted Heterojunction Photovoltaics based on Colloidal Quantum Dots. <i>Advanced Energy Materials</i> , 2013 , 3, 917-922 | 21.8 | 97 | | 95 | Microsecond-sustained lasing from colloidal quantum dot solids. <i>Nature Communications</i> , 2015 , 6, 8694 | 17.4 | 91 | | 94 | Jointly tuned plasmonic-excitonic photovoltaics using nanoshells. <i>Nano Letters</i> , 2013 , 13, 1502-8 | 11.5 | 89 | ## (2019-2013) | 93 | Directly deposited quantum dot solids using a colloidally stable nanoparticle ink. <i>Advanced Materials</i> , 2013 , 25, 5742-9 | 24 | 87 | |----|--|------|----| | 92 | High Color Purity Lead-Free Perovskite Light-Emitting Diodes via Sn Stabilization. <i>Advanced Science</i> , 2020 , 7, 1903213 | 13.6 | 85 | | 91 | Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers. <i>Applied Physics B: Lasers and Optics</i> , 2002 , 75, 445-451 | 1.9 | 85 | | 90 | Efficient hybrid colloidal quantum dot/organic solar cells mediated by near-infrared sensitizing small molecules. <i>Nature Energy</i> , 2019 , 4, 969-976 | 62.3 | 78 | | 89 | Infrared Colloidal Quantum Dot Photovoltaics via Coupling Enhancement and Agglomeration Suppression. <i>ACS Nano</i> , 2015 , 9, 8833-42 | 16.7 | 73 | | 88 | Field-emission from quantum-dot-in-perovskite solids. <i>Nature Communications</i> , 2017 , 8, 14757 | 17.4 | 68 | | 87 | High-Performance Perovskite Single-Junction and Textured Perovskite/Silicon Tandem Solar Cells via Slot-Die-Coating. <i>ACS Energy Letters</i> , 2020 , 5, 3034-3040 | 20.1 | 65 | | 86 | Broadband solar absorption enhancement via periodic nanostructuring of electrodes. <i>Scientific Reports</i> , 2013 , 3, 2928 | 4.9 | 63 | | 85 | Pseudohalide-Exchanged Quantum Dot Solids Achieve Record Quantum Efficiency in Infrared Photovoltaics. <i>Advanced Materials</i> , 2017 , 29, 1700749 | 24 | 61 | | 84 | Photojunction field-effect transistor based on a colloidal quantum dot absorber channel layer. <i>ACS Nano</i> , 2015 , 9, 356-62 | 16.7 | 57 | | 83 | Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films. <i>Nature Communications</i> , 2015 , 6, 7772 | 17.4 | 57 | | 82 | Stable Colloidal Quantum Dot Inks Enable Inkjet-Printed High-Sensitivity Infrared Photodetectors. <i>ACS Nano</i> , 2019 , 13, 11988-11995 | 16.7 | 55 | | 81 | A Facet-Specific Quantum Dot Passivation Strategy for Colloid Management and Efficient Infrared Photovoltaics. <i>Advanced Materials</i> , 2019 , 31, e1805580 | 24 | 55 | | 80 | ZnFe2 O4 Leaves Grown on TiO2 Trees Enhance Photoelectrochemical Water Splitting. <i>Small</i> , 2016 , 12, 3181-8 | 11 | 50 | | 79 | All-Quantum-Dot Infrared Light-Emitting Diodes. ACS Nano, 2015, 9, 12327-33 | 16.7 | 48 | | 78 | Systematic optimization of quantum junction colloidal quantum dot solar cells. <i>Applied Physics Letters</i> , 2012 , 101, 151112 | 3.4 | 48 | | 77 | Butylamine-Catalyzed Synthesis of Nanocrystal Inks Enables Efficient Infrared CQD Solar Cells. <i>Advanced Materials</i> , 2018 , 30, e1803830 | 24 | 48 | | 76 | Mixed Lead Halide Passivation of Quantum Dots. <i>Advanced Materials</i> , 2019 , 31, e1904304 | 24 | 42 | | 75 | 10-GHz train of sub-500-fs optical soliton-like pulses from a surface-emitting semiconductor laser. <i>IEEE Photonics Technology Letters</i> , 2005 , 17, 267-269 | 2.2 | 42 | |----|---|-------|----| | 74 | Single-step colloidal quantum dot films for infrared solar harvesting. <i>Applied Physics Letters</i> , 2016 , 109, 183105 | 3.4 | 42 | | 73 | Picosecond Charge Transfer and Long Carrier Diffusion Lengths in Colloidal Quantum Dot Solids. <i>Nano Letters</i> , 2018 , 18, 7052-7059 | 11.5 | 42 | | 72 | Multiple Self-Trapped Emissions in the Lead-Free Halide CsCuI. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 4326-4330 | 6.4 | 40 | | 71 | Nanoimprint-Transfer-Patterned Solids Enhance Light Absorption in Colloidal Quantum Dot Solar Cells. <i>Nano Letters</i> , 2017 , 17, 2349-2353 | 11.5 | 39 | | 70 | Molecular Doping of the Hole-Transporting Layer for Efficient, Single-Step-Deposited Colloidal Quantum Dot Photovoltaics. <i>ACS Energy Letters</i> , 2017 , 2, 1952-1959 | 20.1 | 39 | | 69 | Atomistic Design of CdSe/CdS Core-Shell Quantum Dots with Suppressed Auger Recombination. <i>Nano Letters</i> , 2016 , 16, 6491-6496 | 11.5 | 39 | | 68 | Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting. <i>Nature Communications</i> , 2018 , 9, 4003 | 17.4 | 39 | | 67 | A Chemically Orthogonal Hole Transport Layer for Efficient Colloidal Quantum Dot Solar Cells. <i>Advanced Materials</i> , 2020 , 32, e1906199 | 24 | 38 | | 66 | Acid-Assisted Ligand Exchange Enhances Coupling in Colloidal Quantum Dot Solids. <i>Nano Letters</i> , 2018 , 18, 4417-4423 | 11.5 | 37 | | 65 | Carrier relaxation dynamics in lead sulfide colloidal quantum dots. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 2757-60 | 3.4 | 37 | | 64 | Nanostructured Back Reflectors for Efficient Colloidal Quantum-Dot Infrared Optoelectronics. <i>Advanced Materials</i> , 2019 , 31, e1901745 | 24 | 36 | | 63 | Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. <i>Nature Photonics</i> , | 33.9 | 35 | | 62 | Activated Electron-Transport Layers for Infrared Quantum Dot Optoelectronics. <i>Advanced Materials</i> , 2018 , 30, e1801720 | 24 | 34 | | 61 | Design of Phosphor White Light Systems for High-Power Applications. ACS Photonics, 2016, 3, 2243-224 | 486.3 | 33 | | 60 | Imbalanced charge carrier mobility and Schottky junction induced anomalous current-voltage characteristics of excitonic PbS colloidal quantum dot solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2016 , 155, 155-165 | 6.4 | 31 | | 59 | Controlled Steric Hindrance Enables Efficient Ligand Exchange for Stable, Infrared-Bandgap Quantum Dot Inks. <i>ACS Energy Letters</i> , 2019 , 4, 1225-1230 | 20.1 | 30 | | 58 | Electronically active impurities in colloidal quantum dot solids. <i>ACS Nano</i> , 2014 , 8, 11763-9 | 16.7 | 30 | #### (2012-2017) | 57 | Enhanced Solar-to-Hydrogen Generation with Broadband Epsilon-Near-Zero Nanostructured Photocatalysts. <i>Advanced Materials</i> , 2017 , 29, 1701165 | 24 | 29 | |----|--|------|----| | 56 | Quantum Dots in Two-Dimensional Perovskite Matrices for Efficient Near-Infrared Light Emission. <i>ACS Photonics</i> , 2017 , 4, 830-836 | 6.3 | 28 | | 55 | Ligand-Assisted Reconstruction of Colloidal Quantum Dots Decreases Trap State Density. <i>Nano Letters</i> , 2020 , 20, 3694-3702 | 11.5 | 27 | | 54 | Exciton Lifetime Broadening and Distribution Profiles of PbS Colloidal Quantum Dot Thin Films Using Frequency- and Temperature-Scanned Photocarrier Radiometry. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 23333-23348 | 3.8 | 27 | | 53 | Halide Re-Shelled Quantum Dot Inks for Infrared Photovoltaics. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 37536-37541 | 9.5 | 26 | | 52 | Electro-Optic Modulation in Hybrid Metal Halide Perovskites. <i>Advanced Materials</i> , 2019 , 31, e1808336 | 24 | 26 | | 51 | Quantum Dot-Plasmon Lasing with Controlled Polarization Patterns. ACS Nano, 2020, 14, 3426-3433 | 16.7 | 26 | | 50 | Hybrid Tandem Quantum Dot/Organic Solar Cells with Enhanced Photocurrent and Efficiency via Ink and Interlayer Engineering. <i>ACS Energy Letters</i> , 2018 , 3, 1307-1314 | 20.1 | 26 | | 49 | Joint mapping of mobility and trap density in colloidal quantum dot solids. ACS Nano, 2013, 7, 5757-62 | 16.7 | 26 | | 48 | Picosecond pulse generation with 1.5 [micro sign]m passively modelocked surface-emitting semiconductor laser. <i>Electronics Letters</i> , 2003 , 39, 846 | 1.1 | 26 | | 47 | A Tuned Alternating D-A Copolymer Hole-Transport Layer Enables Colloidal Quantum Dot Solar Cells with Superior Fill Factor and Efficiency. <i>Advanced Materials</i> , 2020 , 32, e2004985 | 24 | 25 | | 46 | Micron Thick Colloidal Quantum Dot Solids. <i>Nano Letters</i> , 2020 , 20, 5284-5291 | 11.5 | 23 | | 45 | Stabilizing Surface Passivation Enables Stable Operation of Colloidal Quantum Dot Photovoltaic Devices at Maximum Power Point in an Air Ambient. <i>Advanced Materials</i> , 2020 , 32, e1906497 | 24 | 23 | | 44 | Quantitative Analysis of Trap-State-Mediated Exciton Transport in Perovskite-Shelled PbS Quantum Dot Thin Films Using Photocarrier Diffusion-Wave Nondestructive Evaluation and Imaging. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 14416-14427 | 3.8 | 22 | | 43 | Bright and Stable Light-Emitting Diodes Based on Perovskite Quantum Dots in Perovskite Matrix.
Journal of the American Chemical Society, 2021 , 143, 15606-15615 | 16.4 | 22 | | 42 | Engineering Directionality in Quantum Dot Shell Lasing Using Plasmonic Lattices. <i>Nano Letters</i> , 2020 , 20, 1468-1474 | 11.5 | 21 | | 41 | Folded-light-path colloidal quantum dot solar cells. Scientific Reports, 2013, 3, 2166 | 4.9 | 20 | | 40 | Quantum beats due to excitonic ground-state splitting in colloidal quantum dots. <i>Physical Review B</i> , 2012 , 86, | 3.3 | 20 | | 39 | Gain bandwidth characterization of surface-emitting quantum well laser gain structures for femtosecond operation. <i>Optics Express</i> , 2010 , 18, 21330-41 | 3.3 | 19 | |----|---|---------------|----| | 38 | Orthogonal colloidal quantum dot inks enable efficient multilayer optoelectronic devices. <i>Nature Communications</i> , 2020 , 11, 4814 | 17.4 | 19 | | 37 | Optical Resonance Engineering for Infrared Colloidal Quantum Dot Photovoltaics. <i>ACS Energy Letters</i> , 2016 , 1, 852-857 | 20.1 | 19 | | 36 | Photocurrent extraction efficiency in colloidal quantum dot photovoltaics. <i>Applied Physics Letters</i> , 2013 , 103, 211101 | 3.4 | 18 | | 35 | Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption. <i>Applied Physics Letters</i> , 2017 , 110, 223903 | 3.4 | 17 | | 34 | Deep-Blue Perovskite Single-Mode Lasing through Efficient Vapor-Assisted Chlorination. <i>Advanced Materials</i> , 2021 , 33, e2006697 | 24 | 17 | | 33 | A tunable colloidal quantum dot photo field-effect transistor. <i>Applied Physics Letters</i> , 2011 , 99, 101102 | 3.4 | 16 | | 32 | Narrow Emission from Rb3Sb2I9 Nanoparticles. <i>Advanced Optical Materials</i> , 2020 , 8, 1901606 | 8.1 | 16 | | 31 | Quantum Dot Color-Converting Solids Operating Efficiently in the kW/cm2 Regime. <i>Chemistry of Materials</i> , 2017 , 29, 5104-5112 | 9.6 | 15 | | 30 | Megahertz-frequency large-area optical modulators at 1.55 microm based on solution-cast colloidal quantum dots. <i>Optics Express</i> , 2008 , 16, 6683-91 | 3.3 | 14 | | 29 | Spatial Collection in Colloidal Quantum Dot Solar Cells. <i>Advanced Functional Materials</i> , 2020 , 30, 190820 | 00 5.6 | 14 | | 28 | Control Over Ligand Exchange Reactivity in Hole Transport Layer Enables High-Efficiency Colloidal Quantum Dot Solar Cells. <i>ACS Energy Letters</i> , 2021 , 6, 468-476 | 20.1 | 14 | | 27 | Facet-Oriented Coupling Enables Fast and Sensitive Colloidal Quantum Dot Photodetectors. <i>Advanced Materials</i> , 2021 , 33, e2101056 | 24 | 13 | | 26 | Infrared Cavity-Enhanced Colloidal Quantum Dot Photovoltaics Employing Asymmetric Multilayer Electrodes. <i>ACS Energy Letters</i> , 2018 , 3, 2908-2913 | 20.1 | 12 | | 25 | Quantum Dot Self-Assembly Enables Low-Threshold Lasing. <i>Advanced Science</i> , 2021 , 8, e2101125 | 13.6 | 12 | | 24 | Colloidal Quantum Dot Bulk Heterojunction Solids with Near-Unity Charge Extraction Efficiency. <i>Advanced Science</i> , 2020 , 7, 2000894 | 13.6 | 10 | | 23 | Efficient and Stable Colloidal Quantum Dot Solar Cells with a Green-Solvent Hole-Transport Layer. <i>Advanced Energy Materials</i> , 2020 , 10, 2002084 | 21.8 | 9 | | 22 | Linear Electro-Optic Modulation in Highly Polarizable Organic Perovskites. <i>Advanced Materials</i> , 2021 , 33, e2006368 | 24 | 8 | ## (2021-2019) | 21 | Temperature-Induced Self-Compensating Defect Traps and Gain Thresholds in Colloidal Quantum Dots. <i>ACS Nano</i> , 2019 , 13, 8970-8976 | 16.7 | 7 | |----|---|--------|---| | 20 | Structural Distortion and Bandgap Increase of Two-Dimensional Perovskites Induced by Trifluoromethyl Substitution on Spacer Cations. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 10144- | 109749 | 7 | | 19 | Monolithic Organic/Colloidal Quantum Dot Hybrid Tandem Solar Cells via Buffer Engineering. <i>Advanced Materials</i> , 2020 , 32, e2004657 | 24 | 7 | | 18 | Gradient-Doped Colloidal Quantum Dot Solids Enable Thermophotovoltaic Harvesting of Waste Heat. <i>ACS Energy Letters</i> , 2016 , 1, 740-746 | 20.1 | 7 | | 17 | Single-Precursor Intermediate Shelling Enables Bright, Narrow Line Width InAs/InZnP-Based QD Emitters. <i>Chemistry of Materials</i> , 2020 , 32, 2919-2925 | 9.6 | 6 | | 16 | Study of Exciton Hopping Transport in PbS Colloidal Quantum Dot Thin Films Using Frequency- and Temperature-Scanned Photocarrier Radiometry. <i>International Journal of Thermophysics</i> , 2017 , 38, 1 | 2.1 | 6 | | 15 | Colloidal Quantum Dot Solar Cell Band Alignment using Two-Step Ionic Doping 2020 , 2, 1583-1589 | | 6 | | 14 | Continuous-wave operation of monolithically grown 1.5-microm optically pumped vertical-external-cavity surface-emitting lasers. <i>Applied Optics</i> , 2003 , 42, 6678-81 | 1.7 | 5 | | 13 | Rigid Conjugated Diamine Templates for Stable Dion-Jacobson-Type Two-Dimensional Perovskites.
Journal of the American Chemical Society, 2021 , 143, 19901-19908 | 16.4 | 5 | | 12 | Optical Generation and Transport of Charges in Iron Pyrite Nanocrystal Films and Subsequent Injection into SnO2. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 22155-22162 | 3.8 | 5 | | 11 | Atomic layer deposition of absorbing thin films on nanostructured electrodes for short-wavelength infrared photosensing. <i>Applied Physics Letters</i> , 2015 , 107, 153105 | 3.4 | 4 | | 10 | Self-Assembled, Nanowire Network Electrodes for Depleted Bulk Heterojunction Solar Cells (Adv. Mater. 12/2013). <i>Advanced Materials</i> , 2013 , 25, 1768-1768 | 24 | 4 | | 9 | The Impact of Ion Migration on the Electro-Optic Effect in Hybrid OrganicIhorganic Perovskites. <i>Advanced Functional Materials</i> ,2107939 | 15.6 | 4 | | 8 | Suppression of Auger Recombination by Gradient Alloying in InAs/CdSe/CdS QDs. <i>Chemistry of Materials</i> , 2020 , 32, 7703-7709 | 9.6 | 4 | | 7 | Controlled Crystal Plane Orientations in ZnO Transport Layer enables High Responsivity, Low Dark Current Infrared Photodetectors <i>Advanced Materials</i> , 2022 , e2200321 | 24 | 4 | | 6 | Optical gain and lasing in colloidal quantum dots199-232 | | 3 | | 5 | Physical, electrical, and optical properties of SF-PECVD-grown hydrogenated microcrystalline silicon with growth surface electrical bias. <i>Journal of Materials Science: Materials in Electronics</i> , 2006 , 17, 789-799 | 2.1 | 3 | | 4 | Electro-Optic Modulation Using Metal-Free Perovskites. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 19042-19047 | 9.5 | 3 | | 3 | Self-Aligned Non-Centrosymmetric Conjugated Molecules Enable Electro-Optic Perovskites. <i>Advanced Optical Materials</i> ,2100730 | 8.1 | 3 | |---|--|------|---| | 2 | InP-Quantum-Dot-in-ZnS-Matrix Solids for Thermal and Air Stability. <i>Chemistry of Materials</i> , 2020 , 32, 9584-9590 | 9.6 | 2 | | 1 | Reply to: Perovskite decomposition and missing crystal planes in HRTEM. <i>Nature</i> , 2021 , 594, E8-E9 | 50.4 | |