Aleksej Zelezniak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3879392/publications.pdf

Version: 2024-02-01

30 papers 2,892 citations

304602 22 h-index 501076 28 g-index

46 all docs

46 docs citations

46 times ranked

4932 citing authors

#	Article	IF	CITATIONS
1	A proteomic survival predictor for COVID-19 patients in intensive care., 2022, 1, e0000007.		28
2	Data mining of Saccharomyces cerevisiae mutants engineered for increased tolerance towards inhibitors in lignocellulosic hydrolysates. Biotechnology Advances, 2022, 57, 107947.	6.0	29
3	Performance of Regression Models as a Function of Experiment Noise. Bioinformatics and Biology Insights, 2021, 15, 117793222110203.	1.0	9
4	metaGEM: reconstruction of genome scale metabolic models directly from metagenomes. Nucleic Acids Research, 2021, 49, e126-e126.	6.5	50
5	Bayesian genome scale modelling identifies thermal determinants of yeast metabolism. Nature Communications, 2021, 12, 190.	5.8	25
6	Benchmarking accuracy and precision of intensityâ€based absolute quantification of protein abundances in <i>Saccharomyces cerevisiae</i>). Proteomics, 2021, 21, e2000093.	1.3	13
7	Expanding functional protein sequence spaces using generative adversarial networks. Nature Machine Intelligence, 2021, 3, 324-333.	8.3	165
8	Ultra-fast proteomics with Scanning SWATH. Nature Biotechnology, 2021, 39, 846-854.	9.4	173
9	Learning the Regulatory Code of Gene Expression. Frontiers in Molecular Biosciences, 2021, 8, 673363.	1.6	17
10	Potential for improved retention rate by personalized antiseizure medication selection: A registerâ€based analysis. Epilepsia, 2021, 62, 2123-2132.	2.6	7
11	A time-resolved proteomic and prognostic map of COVID-19. Cell Systems, 2021, 12, 780-794.e7.	2.9	125
12	Plastic-Degrading Potential across the Global Microbiome Correlates with Recent Pollution Trends. MBio, 2021, 12, e0215521.	1.8	51
13	Deep learning suggests that gene expression is encoded in all parts of a co-evolving interacting gene regulatory structure. Nature Communications, 2020, 11, 6141.	5.8	83
14	Parallel Factor Analysis Enables Quantification and Identification of Highly Convolved Data-Independent-Acquired Protein Spectra. Patterns, 2020, 1, 100137.	3.1	2
15	Ultra-High-Throughput Clinical Proteomics Reveals Classifiers of COVID-19 Infection. Cell Systems, 2020, 11, 11-24.e4.	2.9	439
16	Learning the regulatory grammar of DNA for gene expression engineering. , 2020, , .		0
17	Ice-Age Climate Adaptations Trap the Alpine Marmot in a State of Low Genetic Diversity. Current Biology, 2019, 29, 1712-1720.e7.	1.8	27
18	Biochemical principles enabling metabolic cooperativity and phenotypic heterogeneity at the single cell level. Current Opinion in Systems Biology, 2018, 8, 97-108.	1.3	29

#	Article	IF	CITATIONS
19	Cost-effective generation of precise label-free quantitative proteomes in high-throughput by microLC and data-independent acquisition. Scientific Reports, 2018, 8, 4346.	1.6	66
20	Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies. Nature Microbiology, 2018, 3, 514-522.	5.9	196
21	Machine Learning Predicts the Yeast Metabolome from the Quantitative Proteome of Kinase Knockouts. Cell Systems, 2018, 7, 269-283.e6.	2.9	80
22	Designing and interpreting â€~multi-omic' experiments that may change our understanding of biology. Current Opinion in Systems Biology, 2017, 6, 37-45.	1.3	81
23	The self-inhibitory nature of metabolic networks and its alleviation through compartmentalization. Nature Communications, 2017, 8, 16018.	5.8	95
24	Functional Metabolomics Describes the Yeast Biosynthetic Regulome. Cell, 2016, 167, 553-565.e12.	13.5	137
25	The metabolic background is a global player in Saccharomyces gene expression epistasis. Nature Microbiology, 2016, 1, 15030.	5.9	76
26	Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6449-6454.	3.3	588
27	Contribution of Network Connectivity in Determining the Relationship between Gene Expression and Metabolite Concentration Changes. PLoS Computational Biology, 2014, 10, e1003572.	1.5	64
28	Prediction and identification of sequences coding for orphan enzymes using genomic and metagenomic neighbours. Molecular Systems Biology, 2012, 8, 581.	3.2	29
29	Flux coupling and transcriptional regulation within the metabolic network of the photosynthetic bacterium <i>Synechocystis</i> sp. PCC6803. Biotechnology Journal, 2011, 6, 330-342.	1.8	51
30	Metabolic Network Topology Reveals Transcriptional Regulatory Signatures of Type 2 Diabetes. PLoS Computational Biology, 2010, 6, e1000729.	1.5	75