Marco A Morales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3879213/publications.pdf

Version: 2024-02-01

218677 3,493 93 26 citations h-index papers

57 g-index 93 93 93 5635 docs citations times ranked citing authors all docs

144013

#	Article	IF	CITATIONS
1	Iron Oxide Nanoparticles for Sustained Delivery of Anticancer Agents. Molecular Pharmaceutics, 2005, 2, 194-205.	4.6	814
2	Biodistribution, Clearance, and Biocompatibility of Iron Oxide Magnetic Nanoparticles in Rats. Molecular Pharmaceutics, 2008, 5, 316-327.	4.6	605
3	Synthesis of magnetite nanoparticles by high energy ball milling. Applied Surface Science, 2013, 275, 84-87.	6.1	112
4	Vacancy ordered Î ³ -Fe2O3 nanoparticles functionalized with nanohydroxyapatite: XRD, FTIR, TEM, XPS and MA¶ssbauer studies. Applied Surface Science, 2016, 389, 721-734.	6.1	112
5	Magnetic studies of iron(III) nanoparticles in alginate polymer for drug delivery applications. Materials Science and Engineering C, 2004, 24, 625-629.	7.3	105
6	Fe2+/Fe3+substitution in hydroxyapatite: Theory and experiment. Physical Review B, 2002, 66, .	3.2	104
7	Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hyperthermia applications. Journal of Magnetism and Magnetic Materials, 2014, 364, 72-79.	2.3	92
8	Wasp-waisted behavior in magnetic hysteresis curves of CoFe ₂ O ₄ nanopowder at a low temperature: experimental evidence and theoretical approach. RSC Advances, 2017, 7, 22187-22196.	3.6	84
9	In situ synthesis and magnetic studies of iron oxide nanoparticles in calcium-alginate matrix for biomedical applications. Materials Science and Engineering C, 2008, 28, 253-257.	7.3	83
10	Magnetic studies of iron oxide nanoparticles coated with oleic acid and Pluronic \hat{A}^{\otimes} block copolymer. Journal of Applied Physics, 2005, 97, 10Q905.	2.5	64
11	Surface anisotropy and magnetic freezing of MnOnanoparticles. Physical Review B, 2007, 75, .	3.2	53
12	Magnetic, structural and surface properties of functionalized maghemite nanoparticles for copper and lead adsorption. RSC Advances, 2017, 7, 28763-28779.	3.6	49
13	Adsorption of arsenite and arsenate on binary and ternary magnetic nanocomposites with high iron oxide content. Applied Surface Science, 2018, 454, 87-100.	6.1	48
14	Structure, magnetic behavior and OER activity of CoFe2O4 powders obtained using agar-agar from red seaweed (Rhodophyta). Materials Chemistry and Physics, 2019, 237, 121847.	4.0	42
15	Ru-Sn catalysts for selective hydrogenation of crotonaldehyde: Effect of the Sn/(Ru+Sn) ratio. Applied Catalysis A: General, 2007, 318, 70-78.	4.3	41
16	Critical dimension for magnetic exchange-spring coupled core/shell <mml:math altimg="si0010.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>CoFe</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:mrow></mml:msub><</mml:math>		
17	Journal of Magnetism and Magnetic Materials, 2013, 326, 81-84. Evaluation of (BH)max and magnetic anisotropy of cobalt ferrite nanoparticles synthesized in gelatin. Ceramics International, 2015, 41, 11804-11809.	4.8	39

Proteic sol-gel synthesis, structure and battery-type behavior of Fe-based spinels (MFe2O4, MÂ=ÂCu, Co,) Tj ETQq0,0 rgBT 10 verlock 10 mg/s representation of Fe-based spinels (MFe2O4, MÂ=ÂCu, Co,) Tj ETQq0,0 rgBT 10 rgBT 1

#	Article	IF	Citations
19	Proteic sol-gel synthesis, structure and magnetic properties of Ni/NiO core-shell powders. Ceramics International, 2018, 44, 6152-6156.	4.8	35
20	The effect of Sr2+ on the structure and magnetic properties of nanocrystalline cobalt ferrite. Materials Letters, 2015, 145, 56-58.	2.6	34
21	Multifunctional solution blow spun NiFe–NiFe2O4 composite nanofibers: Structure, magnetic properties and OER activity. Journal of Physics and Chemistry of Solids, 2020, 139, 109325.	4.0	34
22	Improved Removal Capacity and Equilibrium Time of Maghemite Nanoparticles Growth in Zeolite Type 5A for Pb(II) Adsorption. Nanomaterials, 2020, 10, 1668.	4.1	28
23	Nonwoven Ni–NiO/carbon fibers for electrochemical water oxidation. International Journal of Hydrogen Energy, 2021, 46, 3798-3810.	7.1	28
24	α-Fe2O3 fibers: An efficient photocatalyst for dye degradation under visible light. Journal of Alloys and Compounds, 2021, 882, 160683.	5.5	28
25	Role of catalyst preparation on determining selective sites for hydrogenation of dimethyl adipate over RuSn/Al2O3. Journal of Molecular Catalysis A, 2006, 253, 62-69.	4.8	27
26	Size selected synthesis of magnetite nanoparticles in chitosan matrix. Applied Surface Science, 2013, 275, 71-74.	6.1	27
27	Synthesis of stoichiometric Ca2Fe2O5 nanoparticles by high-energy ball milling and thermal annealing. Physica B: Condensed Matter, 2016, 488, 43-48.	2.7	26
28	Role of oxygen vacancies on the energy storage performance of battery-type NiO electrodes. Ceramics International, 2020, 46, 9233-9239.	4.8	26
29	Oxidative dehydrogenation of ethylbenzene to styrene over the CoFe2O4–MCM-41 catalyst: preferential adsorption on the O2â^Fe3+O2â^ sites located at octahedral positions. Catalysis Science and Technology, 2019, 9, 2469-2484.	4.1	25
30	Ca alginate as scaffold for iron oxide nanoparticles synthesis. Brazilian Journal of Chemical Engineering, 2008, 25, 759-764.	1.3	24
31	Green synthesis of CoWO4 powders using agar-agar from red seaweed (Rhodophyta): Structure, magnetic properties and battery-like behavior. Materials Chemistry and Physics, 2020, 242, 122544.	4.0	24
32	Selective hydrogenation of dimethyl adipate on titania-supported RuSn catalysts. Applied Catalysis A: General, 2009, 353, 101-106.	4.3	23
33	Impact of the SiC addition on the morphological, structural and mechanical properties of Cu-SiC composite powders prepared by high energy milling. Advanced Powder Technology, 2021, 32, 2950-2961.	4.1	22
34	Iron Species Present in Fe/ZSM-5 Catalysts – Influence of the Preparation Method. Hyperfine Interactions, 2001, 134, 161-166.	0.5	21
35	Disorder-induced depression of the Curie temperature in mechanically milledGdAl2. Physical Review B, 2004, 70, .	3.2	21
36	Size selected synthesis of CoFe2O4 nanoparticles prepared in a chitosan matrix. Journal of Applied Physics, 2010, 107, .	2.5	21

#	Article	IF	CITATIONS
37	Pluronic \hat{A}^{\otimes} coated sterically stabilized magnetite nanoparticles for hyperthermia applications. Journal of Magnetism and Magnetic Materials, 2016, 416, 434-440.	2.3	21
38	Exchange bias and spin glass in La2FeMnO6 nanoparticles. Journal of Magnetism and Magnetic Materials, 2019, 471, 177-184.	2.3	21
39	Microwave-assisted hydrothermal synthesis and magnetic properties of nanostructured cobalt ferrite. Journal of Alloys and Compounds, 2019, 799, 36-42.	5.5	20
40	\hat{l}^3 -Fe2O3 nanoparticles embedded in nanohydroxyapatite matrix for magnetic hyperthermia and in vitro osteoblast cell studies. Ceramics International, 2020, 46, 10658-10666.	4.8	20
41	Spin glass or random anisotropy?: The origin of magnetically glassy behavior in nanostructured GdAl2. Journal of Applied Physics, 2005, 97, 10J505.	2.5	19
42	Synthesis and characterization of magnetic mesoporous particles. Journal of Colloid and Interface Science, 2010, 342, 269-277.	9.4	19
43	Nanoparticles of Ni1â°Cu alloys for enhanced heating in magnetic hyperthermia. Journal of Alloys and Compounds, 2019, 787, 935-943.	5.5	19
44	Spinel ferrite MFe2O4 (MÂ=ÂNi, Co, or Cu) nanoparticles prepared by a proteic sol-gel route for oxygen evolution reaction. Advanced Powder Technology, 2022, 33, 103391.	4.1	17
45	57Fediluted in a Ag film prepared by vapor quenching: Nanostructure formation and magnetic behavior. Physical Review B, 2002, 66, .	3.2	16
46	Textural and photocatalytic characteristics of iron-cobalt based nanocomposites supported on SBA-15: Synergistic effect between Fe2+ and Fe0 on photoactivity. Microporous and Mesoporous Materials, 2021, 310, 110582.	4.4	16
47	Design of Magnetic Polymeric Particles as a Stimulus-Responsive System for Gastric Antimicrobial Therapy. AAPS PharmSciTech, 2017, 18, 2026-2036.	3.3	15
48	Synthesis, characterization and magnetic properties of polymer–Fe3O4 nanocomposite. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 100, 101-103.	3.9	13
49	Cashew gum as a sol-gel precursor for green synthesis of nanostructured Ni and Co ferrites. International Journal of Biological Macromolecules, 2020, 164, 4245-4251.	7.5	13
50	Pb–0.5 at. % Fe and Yb–0.5 at. % Fe vapor-quenched films:â \in fLocation and magnetization of the Fe impurities. Physical Review B, 1999, 60, 1111-1116.	3.2	11
51	Suppression of exchange bias effect in maghemite nanoparticles functionalized with H2Y. Journal of Magnetism and Magnetic Materials, 2016, 420, 324-335.	2.3	11
52	Magnetic properties of Ni81Fe19/W90Ti10 multilayers. Journal of Magnetism and Magnetic Materials, 2003, 256, 93-99.	2.3	10
53	Structural and magnetic properties of Ni81Fe19/Zr multilayers. Journal of Magnetism and Magnetic Materials, 2004, 277, 144-152. Exchange bias and superspin glass behavior in nanostructured < mml:math	2.3	10
	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si50.svg"> <mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow>		

altimg="si50.svg"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">CoFe</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mrow></mml:mrow></mml:mrow></mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><m

#	Article	IF	CITATIONS
55	Evaluation of antiplasmodial activity and cytotoxicity assays of amino acids functionalized magnetite nanoparticles: Hyperthermia and flow cytometry applications. Materials Science and Engineering C, 2021, 125, 112097.	7.3	10
56	Synthesis of the Fe–Co alloy from hybrid spheres using carboxymethylcellulose as template and its application in catalysis. Materials Chemistry and Physics, 2020, 242, 122550.	4.0	9
57	Positive exchange bias effect in LaCr0.5Fe0.5O3 perovskite. Journal of Physics and Chemistry of Solids, 2020, 141, 109334.	4.0	9
58	Synthesis of Fe2SiO4-Fe7Co3 Nanocomposite Dispersed in the Mesoporous SBA-15: Application as Magnetically Separable Adsorbent. Molecules, 2020, 25, 1016.	3.8	9
59	Effect of the high energy milling on the microstructure of Cu-20%WC composite powders prepared with recycled WC. International Journal of Refractory Metals and Hard Materials, 2020, 90, 105223.	3.8	9
60	Effect of high energy milling on microstructure and mechanical properties of Al2O3-10Âwt% Co composites consolidated by spark plasma sintering (SPS). Ceramics International, 2021, 47, 677-685.	4.8	9
61	(Bi13Co11)Co2O40–Co3O4 nanocomposites: Approach to different fuels in sol-gel combustion synthesis using the Box-Behnken design. Ceramics International, 2022, 48, 481-494.	4.8	9
62	Structural Behavior of Pt–Sn Supported on MgO. Hyperfine Interactions, 2001, 134, 81-92.	0.5	8
63	Novel one-pot preparation of CoFe2O4–Ag nanocrystalline powders. Materials Letters, 2013, 113, 67-70.	2.6	8
64	Mechano-synthesis, structural and magnetic characterization, and heat release of \hat{l}_{\pm} -Fe nanoparticles embedded in a w \hat{A}_{\pm}^{1} /4stite matrix. Journal of Magnetism and Magnetic Materials, 2015, 391, 83-88.	2.3	8
65	Synthesis, characterization and applications of maghemite beads functionalized with rabbit antibodies. Nanotechnology, 2018, 29, 365701.	2.6	8
66	Structural and magnetic properties of Fe2TiO5 nanopowders prepared by ball-milling and post annealing. Materials Letters, 2019, 236, 526-529.	2.6	8
67	Low-field magnetic analysis for sigma phase embrittlement monitoring in thermally aged 22Cr duplex stainless steel. Journal of Magnetism and Magnetic Materials, 2020, 513, 167072.	2.3	8
68	(Bi13Co11)Co2O40–Co3O4 nanocomposites: Synthesis, characterization and application as substrate for microstrip patch antenna. Ceramics International, 2021, 47, 21530-21530.	4.8	8
69	Synthesis and characterization of NiFe-carbon fibers by solution blow spinning and application for the oxygen evolution reaction. Journal of Physics and Chemistry of Solids, 2022, 160, 110311.	4.0	8
70	Hybrid hematite/calcium ferrite fibers by solution blow spinning: Microstructural, optical and magnetic characterization. Ceramics International, 2021, 47, 33363-33372.	4.8	7
71	Field-driven spin reorientation in SmMnO3 polycrystalline powders. Journal of Alloys and Compounds, 2020, 845, 156327.	5.5	6
72	(Bi13Co11)Co2O40–Co3O4 composites: Synthesis, structural and magnetic properties. Journal of Alloys and Compounds, 2021, 852, 156991.	5.5	6

#	Article	IF	CITATIONS
73	Fe-doped calcium cobaltites as electrocatalysts for oxygen evolution reaction. Ceramics International, 2021, 47, 26109-26118.	4.8	6
74	Fe0.5Co0.5-Co1.15Fe1.15O4/carbon composite nanofibers prepared by solution blow spinning: Structure, morphology, Mössbauer spectroscopy, and application as catalysts for electrochemical water oxidation. International Journal of Hydrogen Energy, 2022, 47, 25266-25279.	7.1	6
75	Magnetic studies in Fe/Zn multilayers. Journal of Magnetism and Magnetic Materials, 2003, 256, 100-105.	2.3	5
76	Surface effect in PVP coated Sm doped magnetite nanoparticles prepared by the polyol method. Ceramics International, 2018, 44, 13050-13054.	4.8	5
77	Ni/NiO-carbon composite fibers prepared by solution blow spinning: Structure and magnetic properties. Ceramics International, 2020, 46, 18933-18939.	4.8	5
78	Preferential adsorption of CO2 on cobalt ferrite sites and its role in oxidative dehydrogenation of ethylbenzene. Brazilian Journal of Chemical Engineering, 2021, 38, 495-510.	1.3	5
79	Magnetic studies of nickel hydride nanoparticles embedded in chitosan matrix. Journal of Magnetism and Magnetic Materials, 2017, 441, 702-709.	2.3	4
80	Evaluation of the spinodal decomposition mechanism in 22Cr–5Ni duplex stainless steel using low-field magnetic analysis. MRS Communications, 2021, 11, 470-475.	1.8	4
81	Evaluation of mechanical ductile damage in sheet metal based on low-field magnetic analysis. Journal of Magnetism and Magnetic Materials, 2021, 539, 168403.	2.3	4
82	Effect of milling time in characteristics of the powder Cu-5wt.% Graphite. Advanced Powder Technology, 2021, , .	4.1	4
83	Consolidation and mechanical properties of WC-Al2O3 composite prepared via high energy ball milling and spark plasma sintering. Ceramics International, 2022, 48, 19026-19035.	4.8	4
84	Photoacoustic investigation of maghemite-based nanocomposite. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 100, 72-74.	3.9	3
85	Al2O3-10Âwt% Fe composite prepared by high energy ball milling: Structure and magnetic properties. Ceramics International, 2021, 47, 984-991.	4.8	3
86	Effects of morphology on the electrochemical performance of NiFe ₂ O ₄ nanoparticles with batteryâ€type behavior. International Journal of Applied Ceramic Technology, 2022, 19, 2016-2028.	2.1	3
87	Fe impurities in Cd and Zn hosts:â€,â€,Theory and experiment. Physical Review B, 2003, 68, .	3.2	2
88	Structural and magnetic investigation of styrene–divinylbenzene encapsulated iron oxide nanoparticles. Materials Letters, 2014, 130, 135-138.	2.6	2
89	Maghemite Interparticle Interactions in γ–Fe2O3/Ag nanocomposites. Journal of Superconductivity and Novel Magnetism, 2013, 26, 2467-2470.	1.8	1
90	Influence of reaction temperature, proportions of iron, cobalt and KOH on the CoFe2O4 synthesis by hydrothermal method assisted by microwave heating. Journal of Materials Science: Materials in Electronics, 2017, 28, 14402-14416.	2.2	1

#	Article	IF	CITATIONS
91	57Fe local environment and magnetic properties of chitosan coated CoFe(2â^)Sm O4 nanoparticles. Ceramics International, 2021, 47, 9169-9177.	4.8	1
92	Photoacoustic spectroscopy study of Blepharocalyx salicifolius (Kunt) O. Berg. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 100, 75-77.	3.9	0
93	In situ synthesis of highly stable FeCo alloy encapsulated in carbon from ethanol. Materials Today Communications, 2022, 32, 103900.	1.9	O