Wenfeng Tan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3879083/wenfeng-tan-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

3,830 48 194 34 h-index g-index citations papers 6.7 5,012 204 5.79 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
194	Suppressed phosphorus-mineralizing bacteria after three decades of fertilization. <i>Agriculture, Ecosystems and Environment</i> , 2022 , 323, 107679	5.7	4
193	Disentangling drivers of soil microbial nutrient limitation in intensive agricultural and natural ecosystems. <i>Science of the Total Environment</i> , 2022 , 806, 150555	10.2	0
192	Mechanisms of efficient As(III) and As(V) removal by Ni-coprecipitated hausmannite nanocomposites. <i>Journal of Environmental Chemical Engineering</i> , 2022 , 107684	6.8	
191	Effect of humic acid on lysozyme interaction with montmorillonite and kaolinite <i>Science of the Total Environment</i> , 2022 , 155370	10.2	0
190	Spectroscopic investigation of conformational changes in urease caused by interaction with humic acid <i>Colloids and Surfaces B: Biointerfaces</i> , 2022 , 215, 112510	6	O
189	Highly efficient removal of Cu-organic chelate complexes by flow-electrode capacitive deionization-self enhanced oxidation (FCDI-SEO): Dissociation, migration and degradation. <i>Chemical Engineering Journal</i> , 2022 , 445, 136811	14.7	О
188	Regional differences in mineral weathering characteristics of zonal soils under intensive agriculture. <i>Applied Clay Science</i> , 2021 , 215, 106336	5.2	О
187	Quantitative Characterization of the Site Density and the Charged State of Functional Groups on Biochar. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 2600-2608	8.3	4
186	Molecular-Scale Understanding of Sulfate Exchange from Schwertmannite by Chromate Versus Arsenate. <i>Environmental Science & Environmental Science & En</i>	10.3	4
185	Conformational modifications of lysozyme caused by interaction with humic acid studied with spectroscopy. <i>Science of the Total Environment</i> , 2021 , 768, 144858	10.2	3
184	Short-term effect of manure and straw application on bacterial and fungal community compositions and abundances in an acidic paddy soil. <i>Journal of Soils and Sediments</i> , 2021 , 21, 3057-307	13.4	1
183	Plant litter quality regulates soil eco-enzymatic stoichiometry and microbial nutrient limitation in a citrus orchard. <i>Plant and Soil</i> , 2021 , 466, 179-191	4.2	4
182	Formation and transformation of manganese(III) intermediates in the photochemical generation of manganese(IV) oxide minerals. <i>Chemosphere</i> , 2021 , 262, 128082	8.4	3
181	Facet-dependent surface charge and Pb adsorption characteristics of hematite nanoparticles: CD-MUSIC-eSGC modeling. <i>Environmental Research</i> , 2021 , 196, 110383	7.9	О
180	Arsenic detoxification by iron-manganese nodules under electrochemically controlled redox: Mechanism and application. <i>Journal of Hazardous Materials</i> , 2021 , 403, 123912	12.8	6
179	Quantitative analysis of Pb adsorption on sulfhydryl-modified biochar. <i>Biochar</i> , 2021 , 3, 37-49	10	7
178	Microstructure of Al-substituted goethite and its adsorption performance for Pb(II) and As(V). <i>Science of the Total Environment</i> , 2021 , 790, 148202	10.2	О

(2020-2021)

177	fluorescence of reduction on the fluorescent units and proton binding of humic acids: Synchronous fluorescence spectrum and NICA-Donnan modeling. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2021 , 626, 127000	5.1	
176	Insights into the improving mechanism of defect-mediated As(V) adsorption on hematite nanoplates. <i>Chemosphere</i> , 2021 , 280, 130597	8.4	3
175	Intrinsic mechanisms of calcium sulfite activation by siderite for atrazine degradation. <i>Chemical Engineering Journal</i> , 2021 , 426, 131917	14.7	2
174	Remediation of heavy metal contaminated soils by organic acid extraction and electrochemical adsorption. <i>Environmental Pollution</i> , 2020 , 264, 114745	9.3	36
173	Molecular Mechanisms of Lead Binding to Ferrihydrite-Bacteria Composites: ITC, XAFS, and EXRF Investigations. <i>Environmental Science & Examp; Technology</i> , 2020 , 54, 4016-4025	10.3	14
172	Effects of Al substitution on local structure and morphology of lepidocrocite and its phosphate adsorption kinetics. <i>Geochimica Et Cosmochimica Acta</i> , 2020 , 276, 109-121	5.5	8
171	Equilibrium mono- and multicomponent adsorption models: From homogeneous ideal to heterogeneous non-ideal binding. <i>Advances in Colloid and Interface Science</i> , 2020 , 280, 102138	14.3	18
170	Adsorption and catalytic oxidation of arsenite on Fe-Mn nodules in the presence of oxygen. <i>Chemosphere</i> , 2020 , 259, 127503	8.4	5
169	The alkaline photo-sulfite system triggers Fe(IV/V) generation at hematite surfaces. <i>Chemical Engineering Journal</i> , 2020 , 401, 126124	14.7	6
168	Resolving humic and fulvic acids in binary systems influenced by adsorptive fractionation to Fe-(hydr)oxide with focus on UVII is analysis. <i>Chemical Engineering Journal</i> , 2020 , 389, 124380	14.7	1
167	Quantitative investigation of ZnO nanoparticle dissolution in the presence of EMnO. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 14751-14762	5.1	2
166	Interaction mechanism of dissolved Cr(VI) and manganite in the presence of goethite coating. <i>Environmental Pollution</i> , 2020 , 260, 114046	9.3	5
165	Catalytic oxidation and adsorption of Cr(III) on iron-manganese nodules under oxic conditions. Journal of Hazardous Materials, 2020 , 390, 122166	12.8	10
164	Effects of aluminum substitution on the surface charge of colloidal goethite particles: experiments and MUSIC modeling. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 38397-38406	5.1	5
163	Electrochemical adsorption of cadmium and arsenic by natural Fe-Mn nodules. <i>Journal of Hazardous Materials</i> , 2020 , 390, 122165	12.8	8
162	XPS and two-dimensional FTIR correlation analysis on the binding characteristics of humic acid onto kaolinite surface. <i>Science of the Total Environment</i> , 2020 , 724, 138154	10.2	28
161	Arsenic release from arsenopyrite oxidative dissolution in the presence of citrate under UV irradiation. <i>Science of the Total Environment</i> , 2020 , 726, 138429	10.2	6
160	Epitaxial growth mechanism of heterogeneous catalytic oxidation of Mn(II) on manganite under oxic conditions. <i>Chemical Geology</i> , 2020 , 547, 119670	4.2	3

159	Preference of Co over Al for substitution of Fe in goethite (FeOOH) structure: Mechanism revealed from EXAFS, XPS, DFT and linear free energy correlation model. <i>Chemical Geology</i> , 2020 , 532, 119378	4.2	5
158	Effects of Co(II) ion exchange, Ni(II)- and V(V)-doping on the transformation behaviors of Cr(III) on hexagonal turbostratic birnessite-water interfaces. <i>Environmental Pollution</i> , 2020 , 256, 113462	9.3	9
157	Synergistic adsorption of Cd(II) and As(V) on birnessite under electrochemical control. <i>Chemosphere</i> , 2020 , 247, 125822	8.4	3
156	Coupled morphological and structural evolution of EMnO2 to EMnO2 through multistage oriented assembly processes: the role of Mn(III). <i>Environmental Science: Nano</i> , 2020 , 7, 238-249	7.1	6
155	High-efficiency As(III) oxidation and electrocoagulation removal using hematite with a charge-discharge technique. <i>Science of the Total Environment</i> , 2020 , 703, 135678	10.2	8
154	As(III) adsorption on Fe-Mn binary oxides: Are Fe and Mn oxides synergistic or antagonistic for arsenic removal?. <i>Chemical Engineering Journal</i> , 2020 , 389, 124470	14.7	41
153	Highly enhanced oxidation of arsenite at the surface of birnessite in the presence of pyrophosphate and the underlying reaction mechanisms. <i>Water Research</i> , 2020 , 187, 116420	12.5	6
152	Goethite effects on transport and activity of lysozyme with humic acid in quartz sand. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2020 , 604, 125319	5.1	1
151	Adsorption and precipitation of myo-inositol hexakisphosphate onto kaolinite. <i>European Journal of Soil Science</i> , 2020 , 71, 226-235	3.4	5
150	High manure load reduces bacterial diversity and network complexity in a paddy soil under crop rotations. <i>Soil Ecology Letters</i> , 2020 , 2, 104-119	2.7	15
149	Mixed ad/desorption kinetics unraveled with the equilibrium adsorption isotherm. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2019 , 577, 709-722	5.1	12
148	Enhanced adsorption removal of arsenic from mining wastewater using birnessite under electrochemical redox reactions. <i>Chemical Engineering Journal</i> , 2019 , 375, 122051	14.7	39
147	Impact of low-molecular weight organic acids on selenite immobilization by goethite: Understanding a competitive-synergistic coupling effect and speciation transformation. <i>Science of the Total Environment</i> , 2019 , 684, 694-704	10.2	12
146	Effects of myo-inositol hexakisphosphate, ferrihydrite coating, ionic strength and pH on the transport of TiO nanoparticles in quartz sand. <i>Environmental Pollution</i> , 2019 , 252, 1193-1201	9.3	9
145	Factor contribution to soil organic and inorganic carbon accumulation in the Loess Plateau: Structural equation modeling. <i>Geoderma</i> , 2019 , 352, 116-125	6.7	27
144	Spatial analysis of soil aggregate stability in a small catchment of the Loess Plateau, China: II. Spatial prediction. <i>Soil and Tillage Research</i> , 2019 , 192, 1-11	6.5	11
143	Al-substitution-induced defect sites enhance adsorption of Pb2+ on hematite. <i>Environmental Science: Nano</i> , 2019 , 6, 1323-1331	7.1	16
142	Selective adsorption of soil humic acid on binary systems containing kaolinite and goethite: Assessment of sorbent interactions. <i>European Journal of Soil Science</i> , 2019 , 70, 1098	3.4	3

(2018-2019)

141	Lead binding to wild metal-resistant bacteria analyzed by ITC and XAFS spectroscopy. Environmental Pollution, 2019 , 250, 118-126	9.3	14	
140	Origin of Smectite in Salinized Soil of Junggar Basin in Xinjiang of China. <i>Minerals (Basel, Switzerland)</i> , 2019 , 9, 100	2.4	2	
139	Photochemical Formation Process of Schwertmannite on Montmorillonite and Corresponding Cr(VI) Adsorption Capacity. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 718-727	3.2	11	
138	Improved removal capacity of magnetite for Cr(VI) by electrochemical reduction. <i>Journal of Hazardous Materials</i> , 2019 , 374, 26-34	12.8	64	
137	Effects of Mn2+, Ni2+, and Cu2+ on the Formation and Transformation of Hydrosulfate Green Rust: Reaction Processes and Underlying Mechanisms. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 519-530	3.2	5	
136	Formation and Morphology Evolution from Ferrihydrite to Hematite in the Presence of Tartaric Acid. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 562-570	3.2	3	
135	Natural grassland as the optimal pattern of vegetation restoration in arid and semi-arid regions: Evidence from nutrient limitation of soil microbes. <i>Science of the Total Environment</i> , 2019 , 648, 388-397	10.2	65	
134	The Speciation of Cd in CdHe Coprecipitates: Does Cd Substitute for Fe in Goethite Structure?. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 2225-2236	3.2	9	
133	Solar Irradiation Induced Transformation of Ferrihydrite in the Presence of Aqueous Fe. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	12	
132	Phosphate speciation on Al-substituted goethite: ATR-FTIR/2D-COS and CD-MUSIC modeling. <i>Environmental Science: Nano</i> , 2019 , 6, 3625-3637	7.1	7	
131	Arbuscular mycorrhizal mycelial networks and glomalin-related soil protein increase soil aggregation in Calcaric Regosol under well-watered and drought stress conditions. <i>Soil and Tillage Research</i> , 2019 , 185, 1-8	6.5	35	
130	Patterns of soil microbial nutrient limitations and their roles in the variation of soil organic carbon across a precipitation gradient in an arid and semi-arid region. <i>Science of the Total Environment</i> , 2019 , 658, 1440-1451	10.2	38	
129	The catalytic effect of AQDS as an electron shuttle on Mn(II) oxidation to birnessite on ferrihydrite at circumneutral pH. <i>Geochimica Et Cosmochimica Acta</i> , 2019 , 247, 175-190	5.5	9	
128	Spatio-temporal dynamics of soil moisture driven by G rain for Greenlprogram on the Loess Plateau, China. <i>Agriculture, Ecosystems and Environment</i> , 2019 , 269, 204-214	5.7	26	
127	Cd adsorption performance of tunnel-structured manganese oxides driven by electrochemically controlled redox. <i>Environmental Pollution</i> , 2019 , 244, 783-791	9.3	20	
126	Transformation of Co-containing birnessite to todorokite: Effect of Co on the transformation and implications for Co mobility. <i>Geochimica Et Cosmochimica Acta</i> , 2019 , 246, 21-40	5.5	15	
125	Formation of Zn-Al layered double hydroxides (LDH) during the interaction of ZnO nanoparticles (NPs) with EAlO. <i>Science of the Total Environment</i> , 2019 , 650, 1980-1987	10.2	18	
124	Proton and Copper Binding to Humic Acids Analyzed by XAFS Spectroscopy and Isothermal Titration Calorimetry. <i>Environmental Science & Environmental Sc</i>	10.3	28	

123	Enhanced oxidation of arsenite to arsenate using tunable K concentration in the OMS-2 tunnel. <i>Environmental Pollution</i> , 2018 , 238, 524-531	9.3	6
122	Spatial analysis of soil aggregate stability in a small catchment of the Loess Plateau, China: I. Spatial variability. <i>Soil and Tillage Research</i> , 2018 , 179, 71-81	6.5	27
121	Roles of different types of oxalate surface complexes in dissolution process of ferrihydrite aggregates. <i>Scientific Reports</i> , 2018 , 8, 2060	4.9	11
120	Contribution of Soil Active Components to the Control of Heavy Metal Speciation 2018 , 165-188		
119	Effect of Soil Fulvic and Humic Acids on Pb Binding to the Goethite/Solution Interface: Ligand Charge Distribution Modeling and Speciation Distribution of Pb. <i>Environmental Science & Technology</i> , 2018 , 52, 1348-1356	10.3	26
118	Symbiosis mechanism of iron and manganese oxides in oxic aqueous systems. <i>Chemical Geology</i> , 2018 , 488, 162-170	4.2	9
117	Dissolution and phase transformation processes of hausmannite in acidic aqueous systems under anoxic conditions. <i>Chemical Geology</i> , 2018 , 487, 54-62	4.2	20
116	Mechanisms of interaction between arsenian pyrite and aqueous arsenite under anoxic and oxic conditions. <i>Geochimica Et Cosmochimica Acta</i> , 2018 , 228, 205-219	5.5	21
115	Abiotic photomineralization and transformation of iron oxide nanominerals in aqueous systems. <i>Environmental Science: Nano</i> , 2018 , 5, 1169-1178	7.1	7
114	Efficient catalytic As(III) oxidation on the surface of ferrihydrite in the presence of aqueous Mn(II). Water Research, 2018 , 128, 92-101	12.5	40
113	Influence of humic acid on transport, deposition and activity of lysozyme in quartz sand. <i>Environmental Pollution</i> , 2018 , 242, 298-306	9.3	9
112	Effects of Myo-inositol Hexakisphosphate on Zn(II) Sorption on EAlumina: A Mechanistic Study. <i>ACS Earth and Space Chemistry</i> , 2018 , 2, 787-796	3.2	10
111	CD-MUSIC-EDL Modeling of Pb Adsorption on Birnessites: Role of Vacant and Edge Sites. <i>Environmental Science & Environmental &</i>	10.3	18
110	Photochemical oxidation and dissolution of arsenopyrite in acidic solutions. <i>Geochimica Et Cosmochimica Acta</i> , 2018 , 239, 173-185	5.5	15
109	High-performance Cu adsorption of birnessite using electrochemically controlled redox reactions. Journal of Hazardous Materials, 2018 , 354, 107-115	12.8	32
108	Catalytic oxidation of arsenite and reaction pathways on the surface of CuO nanoparticles at a wide range of pHs. <i>Geochemical Transactions</i> , 2018 , 19, 12	3	11
107	The distinct effects of isomorphous substitution of various divalence trace metals on hematite structure. <i>Materials Chemistry and Physics</i> , 2018 , 217, 40-47	4.4	2
106	Effect of citrate on the species and levels of Al impurities in ferrihydrite. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2018 , 539, 140-147	5.1	5

Interaction mechanism and kinetics of ferrous sulfide and manganese oxides in aqueous system. <i>Journal of Soils and Sediments</i> , 2018 , 18, 564-575	3.4	3	
Effect of Cd and Al Coincorporation on the Structures and Properties of Goethite. <i>ACS Earth and Space Chemistry</i> , 2018 , 2, 1283-1293	3.2	4	
Effective Zinc Adsorption Driven by Electrochemical Redox Reactions of Birnessite Nanosheets Generated by Solar Photochemistry. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 13907-13914	8.3	7	
Profile distribution of soil organic and inorganic carbon following revegetation on the Loess Plateau, China. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 30301-30314	5.1	5	
Photochemical Formation and Transformation of Birnessite: Effects of Cations on Micromorphology and Crystal Structure. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	23	
Synthetic Polymer Affinity Ligand for Bacillus thuringiensis (Bt) Cry1Ab/Ac Protein: The Use of Biomimicry Based on the Bt Protein-Insect Receptor Binding Mechanism. <i>Journal of the American Chemical Society</i> , 2018 , 140, 6853-6864	16.4	14	
Quantitative and structural analysis of minerals in soil clay fractions developed under different climate zones in China by XRD with Rietveld method, and its implications for pedogenesis. <i>Applied Clay Science</i> , 2018 , 162, 351-361	5.2	13	
Zinc removal from aqueous solution using a deionization pseudocapacitor with a high-performance nanostructured birnessite electrode. <i>Environmental Science: Nano</i> , 2017 , 4, 811-823	7.1	16	
Desorption rate of glyphosate from goethite as affected by different entering ligands: hints on the desorption mechanism. <i>Environmental Chemistry</i> , 2017 , 14, 288	3.2	1	
Mechanisms of Mn(II) catalytic oxidation on ferrihydrite surfaces and the formation of manganese (oxyhydr)oxides. <i>Geochimica Et Cosmochimica Acta</i> , 2017 , 211, 79-96	5.5	67	
Morphology-dependent enhancement of arsenite oxidation to arsenate on birnessite-type manganese oxide. <i>Chemical Engineering Journal</i> , 2017 , 327, 235-243	14.7	29	
Mechanisms of soil humic acid adsorption onto montmorillonite and kaolinite. <i>Journal of Colloid and Interface Science</i> , 2017 , 504, 457-467	9.3	63	
Effects of polyphosphates and orthophosphate on the dissolution and transformation of ZnO nanoparticles. <i>Chemosphere</i> , 2017 , 176, 255-265	8.4	20	
In situ detection of intermediates from the interaction of dissolved sulfide and manganese oxides with a platinum electrode in aqueous systems. <i>Environmental Chemistry</i> , 2017 , 14, 178	3.2	2	
Mechanisms of arsenic-containing pyrite oxidation by aqueous arsenate under anoxic conditions. <i>Geochimica Et Cosmochimica Acta</i> , 2017 , 217, 306-319	5.5	39	
Enhancement of Zn2+ and Ni2+ removal performance using a deionization pseudocapacitor with nanostructured birnessite and its carbon nanotube composite electrodes. <i>Chemical Engineering Journal</i> , 2017 , 328, 464-473	14.7	34	
SoilChip-XPS integrated technique to study formation of soil biogeochemical interfaces. <i>Soil Biology and Biochemistry</i> , 2017 , 113, 71-79	7.5	14	
Local structure of Cu2 + in Cu-doped hexagonal turbostratic birnessite and Cu2 + stability under acid treatment. <i>Chemical Geology</i> , 2017 , 466, 512-523	4.2	22	
	Effect of Cd and Al Coincorporation on the Structures and Properties of Goethite. ACS Earth and Space Chemistry, 2018, 2, 1283-1293 Effective Zinc Adsorption Driven by Electrochemical Redox Reactions of Birnessite Nanosheets Generated by Solar Photochemistry. ACS Sustainable Chemistry and Engineering, 2018, 6, 13907-13914 Profile distribution of soil organic and inorganic carbon following revegetation on the Loess Plateau, China. Environmental Science and Pollution Research, 2018, 25, 30301-30314 Photochemical Formation and Transformation of Birnessite: Effects of Cations on Micromorphology and Crystal Structure. Environmental Science & Bamp, Technology, 2018, 52, 6864-6871 Synthetic Polymer Affinity Ligand for Bacillus thuringiensis (Bt) Cry1Ab/Ac Protein: The Use of Biomimicry Based on the Bt Protein-Insect Receptor Binding Mechanism. Journal of the American Chemical Society, 2018, 140, 6833-6864 Quantitative and structural analysis of minerals in soil clay fractions developed under different climate zones in China by XRD with Rietveld method, and its implications for pedogenesis. Applied Clay Science, 2018, 162, 151-361 Zinc removal from aqueous solution using a deionization pseudocapacitor with a high-performance nanostructured birnessike electrode. Environmental Science: Nano, 2017, 4, 811-823 Desorption rate of glyphosate from goethite as affected by different entering ligands: hints on the desorption mechanism. Environmental Chemistry, 2017, 14, 288 Mechanisms of Mn(II) catalytic oxidation on ferrihydrite surfaces and the formation of manganese (oxyhydr) oxides. Geochimica Et Cosmochimica Acta, 2017, 211, 79-96 Morphology-dependent enhancement of arsenite oxidation to arsenate on birnessite-type manganese oxide. Chemical Engineering Journal, 2017, 327, 235-243 Mechanisms of arsenic-containing pyrite oxidation by aqueous arsenate under anoxic conditions. Geochimica Et Cosmochimica Acta, 2017, 217, 306-319 Enhancement of Zn2-a and Ni2- removal performance using a deionization pseudocapacitor wit	Effect of Cd and Al Coincorporation on the Structures and Properties of Goethite. ACS Earth and Space Chemistry, 2018, 2, 1283-1293 Effective Zinc Adsorption Driven by Electrochemical Redox Reactions of Birnessite Nanosheets Generated by Solar Photochemistry. ACS Sustainable Chemistry and Engineering, 2018, 6, 13907-13914 Profile distribution of soil organic and inorganic carbon following revegetation on the Loess Plateau, China. Environmental Science and Pollution Research, 2018, 25, 30301-30314 Photochemical Formation and Transformation of Birnessite: Effects of Cations on Micromorphology and Crystal Structure. Environmental Science & amp; Technology, 2018, 52, 6864-6871 Synthetic Polymer Affinity Ligand for Bacillus thuringiensis (Bt) Cry1Ab/Ac Protein: The Use of Biomimicry Based on the Bt Protein-Insect Receptor Binding Mechanism. Journal of the American Chemical Society, 2018, 140, 6853-6884 Quantitative and structural analysis of minerals in soil clay fractions developed under different climate zones in China by XRD with Rietveld method, and its implications for pedogenesis. Applied Clay Science, 2018, 162, 351-361 Zinc removal from aqueous solution using a deionization pseudocapacitor with a high-performance nanostructured birnessite electrode. Environmental Science: Nano, 2017, 4, 811-823 Tinc removal from aqueous solution using a deionization pseudocapacitor with a high-performance nanostructured birnessite electrode. Environmental Science: Nano, 2017, 4, 811-823 Zinc removal from aqueous solution on ferrihydrite surfaces and the formation of manganese (oxyhydr)oxides. Geochimica Et Cosmochimica Acta, 2017, 211, 79-96 Morphology-dependent enhancement of arsenite oxidation to arsenate on birnessite-type manganese oxide. Chemical Engineering Journal, 2017, 327, 235-243 Mechanisms of soil humic acid adsorption onto montmorillonite and kaolinite. Journal of Colloid and Interface Science, 2017, 504, 457-467 Effects of polyphosphates and orthophosphate on the dissolution and transformation of ZnO	Effect of Cd and Al Coincorporation on the Structures and Properties of Goethite. ACS Earth and Space Chemistry, 2018, 12, 21283-1293 Effective Zinc Adsorption Driven by Electrochemical Redox Reactions of Birnessite Nanosheets Generated by Solar Photochemistry. ACS Sustainable Chemistry and Engineering, 2018, 6, 13907-13914 8-3 7 Profile distribution of soil organic and inorganic carbon following revegetation on the Loess Plateau, China. Environmental Science and Pollution Research, 2018, 25, 30301-30314 Photochemical Formation and Transformation of Birnessite: Effects of Cations on Micromorphology and Crystal Structure. Environmental Science Ramp; Technology, 2018, 52, 6864-6871 Photochemical Formation and Transformation of Birnessite: Effects of Cations on Micromorphology and Crystal Structure. Environmental Science Ramp; Technology, 2018, 52, 6864-6871 Photochemical Formation and Transformation of Birnessite: Effects of Cations on Micromorphology and Crystal Structure. Environmental Science Ramp; Technology, 2018, 52, 6864-6871 Synthetic Polymer Affinity Ligand for Bacillus thuringiensis (BI) Crys JAb/Ac Protein. The Use of Biominityr Based on the Bt Protein-Insect Receptor Binding Mechanism. Journal of the American Chemical Society, 2018, 140, 6853-6864 Quantitative and structural analysis of minerals in soil day fractions developed under different Climate zones in China by XRD with Rieveld method, and its implications for pedogenesis. Applied Clay Science, 2018, 162, 351-361 Zinc removal from aqueous solution using a deionization pseudocapacitor with a high-performance nanostructured birnessite electrode. Environmental Science; Nano, 2017, 4, 811-823 Total Personal Protein approach of the Broad Protein Pro

87	Oxidation and Catalytic Oxidation of Dissolved Sulfide by Manganite in Aqueous Systems. <i>Clays and Clay Minerals</i> , 2017 , 65, 299-309	2.1	6
86	Influences and Mechanisms of As(V) Concentration and Environmental Factors on Hydrosulfate Green Rust Transformation. <i>Acta Chimica Sinica</i> , 2017 , 75, 608	3.3	3
85	Mechanisms on the morphology variation of hematite crystals by Al substitution: The modification of Fe and O reticular densities. <i>Scientific Reports</i> , 2016 , 6, 35960	4.9	27
84	Surface speciation of myo-inositol hexakisphosphate adsorbed on TiO2 nanoparticles and its impact on their colloidal stability in aqueous suspension: A comparative study with orthophosphate. <i>Science of the Total Environment</i> , 2016 , 544, 134-42	10.2	17
83	Effect of different vegetation cover on the vertical distribution of soil organic and inorganic carbon in the Zhifanggou Watershed on the loess plateau. <i>Catena</i> , 2016 , 139, 191-198	5.8	66
82	Surface adsorption and precipitation of inositol hexakisphosphate on calcite: A comparison with orthophosphate. <i>Chemical Geology</i> , 2016 , 421, 103-111	4.2	23
81	The simultaneous presence of glyphosate and phosphate at the goethite surface as seen by XPS, ATR-FTIR and competitive adsorption isotherms. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2016 , 498, 121-127	5.1	23
80	Facile crystal-structure-controlled synthesis of iron oxides for adsorbents and anode materials of lithium batteries. <i>Materials Chemistry and Physics</i> , 2016 , 170, 239-245	4.4	13
79	Effects of Al(3+) doping on the structure and properties of goethite and its adsorption behavior towards phosphate. <i>Journal of Environmental Sciences</i> , 2016 , 45, 18-27	6.4	20
78	Influence factors for the oxidation of pyrite by oxygen and birnessite in aqueous systems. <i>Journal of Environmental Sciences</i> , 2016 , 45, 164-76	6.4	19
77	Exploring the effects of landscape structure on aerosol optical depth (AOD) patterns using GIS and HJ-1B images. <i>Environmental Sciences: Processes and Impacts</i> , 2016 , 18, 265-76	4.3	6
76	Effects of myo-inositol hexakisphosphate and orthophosphate adsorption on aggregation of CeO2 nanoparticles: roles of pH and surface coverage. <i>Environmental Chemistry</i> , 2016 , 13, 34	3.2	4
75	Cadmium Removal from Aqueous Solution by a Deionization Supercapacitor with a Birnessite Electrode. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 34405-34413	9.5	53
74	A sol-gel derived pH-responsive bovine serum albumin molecularly imprinted poly(ionic liquids) on the surface of multiwall carbon nanotubes. <i>Analytica Chimica Acta</i> , 2016 , 932, 29-40	6.6	43
73	Copper binding to soil fulvic and humic acids: NICA-Donnan modeling and conditional affinity spectra. <i>Journal of Colloid and Interface Science</i> , 2016 , 473, 141-51	9.3	43
72	The associations of heavy metals with crystalline iron oxides in the polluted soils around the mining areas in Guangdong Province, China. <i>Chemosphere</i> , 2016 , 161, 181-189	8.4	55
71	Facile synthesis of birnessite-type manganese oxide nanoparticles as supercapacitor electrode materials. <i>Journal of Colloid and Interface Science</i> , 2016 , 482, 183-192	9.3	29
70	Effect of soil fulvic and humic acid on binding of Pb to goethite-water interface: Linear additivity and volume fractions of HS in the Stern layer. <i>Journal of Colloid and Interface Science</i> , 2015 , 457, 121-30	9.3	34

(2013-2015)

69	Oxidation process of dissolvable sulfide by synthesized todorokite in aqueous systems. <i>Journal of Hazardous Materials</i> , 2015 , 290, 106-16	12.8	20
68	Microcalorimetric Study on the Growth and Metabolism of a Manganese-Oxidizing Bacterium and its Mutant Strain. <i>Geomicrobiology Journal</i> , 2015 , 32, 585-593	2.5	O
67	Transformation from Phyllomanganates to Todorokite under Various Conditions: A Review of Implication for Formation Pathway of Natural Todorokite. <i>ACS Symposium Series</i> , 2015 , 107-134	0.4	4
66	The Presence of Ferrihydrite Promotes Abiotic Formation of Manganese (Oxyhydr)oxides. <i>Soil Science Society of America Journal</i> , 2015 , 79, 1297-1305	2.5	21
65	Formation of todorokite from "c-disordered" H(+)-birnessites: the roles of average manganese oxidation state and interlayer cations. <i>Geochemical Transactions</i> , 2015 , 16, 8	3	19
64	Absorption mechanisms of Cu(2+) on a biogenic bixbyite-like Mn2O3 produced by Bacillus CUA isolated from soil. <i>Geochemical Transactions</i> , 2015 , 16, 5	3	5
63	Effects of humic acid on adhesion of Bacillus subtilis to phyllosilicates and goethite. <i>Chemical Geology</i> , 2015 , 416, 19-27	4.2	14
62	Structure and properties of vanadium(V)-doped hexagonal turbostratic birnessite and its enhanced scavenging of Pb[]+ from solutions. <i>Journal of Hazardous Materials</i> , 2015 , 288, 80-8	12.8	19
61	Surface properties and phosphate adsorption of binary systems containing goethite and kaolinite. <i>Geoderma</i> , 2014 , 213, 478-484	6.7	55
60	Zn sorption to biogenic bixbyite-like Mn 2 O 3 produced by Bacillus CUA isolated from soil: XAFS study with constraints on sorption mechanism. <i>Chemical Geology</i> , 2014 , 389, 82-90	4.2	11
59	Effect of carbonate and phosphate ratios on the transformation of calcium orthophosphates. <i>Materials Research Bulletin</i> , 2014 , 55, 114-120	5.1	2
58	Interaction between lysozyme and humic acid in layer-by-layer assemblies: effects of pH and ionic strength. <i>Journal of Colloid and Interface Science</i> , 2014 , 430, 40-6	9.3	14
57	Soil inorganic carbon stock under different soil types and land uses on the Loess Plateau region of China. <i>Catena</i> , 2014 , 121, 22-30	5.8	69
56	Characteristics of the fifth paleosol complex (S5) in the southernmost part of the Chinese Loess Plateau and its paleo-environmental significance. <i>Catena</i> , 2014 , 122, 130-139	5.8	3
55	Adsorption-Desorption of Myo-Inositol Hexakisphosphate on Hematite. Soil Science, 2014, 179, 476-485	5 0.9	22
54	Transformation of hydroxycarbonate green rust into crystalline iron (hydr)oxides: Influences of reaction conditions and underlying mechanisms. <i>Chemical Geology</i> , 2013 , 351, 57-65	4.2	26
53	Lead binding to soil fulvic and humic acids: NICA-Donnan modeling and XAFS spectroscopy. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	95
52	Influence of soil humic and fulvic acid on the activity and stability of lysozyme and urease. <i>Environmental Science & amp; Technology</i> , 2013 , 47, 5050-6	10.3	42

51	Proton binding to soil humic and fulvic acids: Experiments and NICA-Donnan modeling. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2013 , 436, 1152-1158	5.1	32
50	Effects of Fe doping on the structures and properties of hexagonal birnessites © comparison with Co and Ni doping. <i>Geochimica Et Cosmochimica Acta</i> , 2013 , 117, 1-15	5.5	52
49	Characteristics of Phosphate Adsorption-Desorption Onto Ferrihydrite. Soil Science, 2013, 178, 1-11	0.9	127
48	The Influence of Humic Acids on the Activities of Lysozyme and Urease 2013 , 817-821		
47	One-step synthesis of sea urchin-like EMnO2 using KIO4 as the oxidant and its oxidation of arsenite. <i>Materials Letters</i> , 2012 , 77, 60-62	3.3	12
46	Synthesis of hureaulite by a reflux process at ambient temperature and pressure. <i>Microporous and Mesoporous Materials</i> , 2012 , 153, 115-123	5.3	17
45	Influence of lysozyme complexation with purified Aldrich humic acid on lysozyme activity. <i>European Journal of Soil Science</i> , 2012 , 63, 550-557	3.4	11
44	Fourier transform infrared spectroscopy study of acid birnessites before and after Pb2+ adsorption. <i>Clay Minerals</i> , 2012 , 47, 191-204	1.3	34
43	Role of Counteranions in Sol G el-Derived Alkoxyl-Functionalized Ionic-Liquid-Based Organic I horganic Hybrid Coatings for SPME. <i>Chromatographia</i> , 2012 , 75, 1421-1433	2.1	19
42	Mineralogical and pedogenetic evidence for palaeoenvironmental variations during the Holocene on the Loess Plateau, China. <i>Catena</i> , 2012 , 96, 49-56	5.8	12
41	Sorption behavior of heavy metals on birnessite: Relationship with its Mn average oxidation state and implications for types of sorption sites. <i>Chemical Geology</i> , 2012 , 292-293, 25-34	4.2	130
40	Characterization of Ni-rich hexagonal birnessite and its geochemical effects on aqueous Pb2+/Zn2+ and As(III). <i>Geochimica Et Cosmochimica Acta</i> , 2012 , 93, 47-62	5.5	69
39	Microstructure, Interaction Mechanisms, and Stability of Binary Systems Containing Goethite and Kaolinite. <i>Soil Science Society of America Journal</i> , 2012 , 76, 389-398	2.5	19
38	Environmental significance of mineral weathering and pedogenesis of loess on the southernmost Loess Plateau, China. <i>Geoderma</i> , 2011 , 163, 219-226	6.7	31
37	Roles of manganese oxides in degradation of phenol under UV-Vis irradiation: adsorption, oxidation, and photocatalysis. <i>Journal of Environmental Sciences</i> , 2011 , 23, 1904-10	6.4	28
36	Formation and Transformation of Iron OxideRaolinite Associations in the Presence of Iron(II). <i>Soil Science Society of America Journal</i> , 2011 , 75, 45-55	2.5	12
35	Factors Influencing the Elemental Distribution in Iron-Manganese Cutans of Three Subtropical Soils. <i>Soil Science</i> , 2011 , 176, 48-56	0.9	4
34	Co2+-exchange mechanism of birnessite and its application for the removal of Pb2+ and As(III). Journal of Hazardous Materials, 2011, 196, 318-26	12.8	36

33	HMnO2 nanowires transformed from precursor HMnO2 by refluxing under ambient pressure: The key role of pH and growth mechanism. <i>Materials Chemistry and Physics</i> , 2011 , 125, 678-685	4.4	24
32	Soil shrinkage and hydrostructural characteristics of three swelling soils in Shaanxi, China. <i>Journal of Soils and Sediments</i> , 2011 , 11, 474-481	3.4	24
31	Oxidation behavior and kinetics of sulfide by synthesized manganese oxide minerals. <i>Journal of Soils and Sediments</i> , 2011 , 11, 1323-1333	3.4	17
30	Large-scale size-controlled synthesis of cryptomelane-type manganese oxide OMS-2 in lateral and longitudinal directions. <i>Journal of Materials Chemistry</i> , 2011 , 21, 5223		21
29	Structural Controls on the Catalytic Polymerization of Hydroquinone by Birnessites. <i>Clays and Clay Minerals</i> , 2011 , 59, 525-537	2.1	8
28	XAFS studies on surface coordination of Pb2+ on birnessites with different average oxidation states. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2011 , 379, 86-92	5.1	11
27	Characterization of Co-doped birnessites and application for removal of lead and arsenite. <i>Journal of Hazardous Materials</i> , 2011 , 188, 341-9	12.8	62
26	Synthesis of a Nanofibrous Manganese Oxide Octahedral Molecular Sieve with Co(NH3)63+ Complex Ions as a Template via a Reflux Method. <i>Crystal Growth and Design</i> , 2010 , 10, 3355-3362	3.5	9
25	Effect of 1-1 electrolyte concentration on the adsorption/desorption of copper ion on synthetic birnessite. <i>Journal of Soils and Sediments</i> , 2010 , 10, 879-885	3.4	11
24	Aging promotes todorokite formation from layered manganese oxide at near-surface conditions. Journal of Soils and Sediments, 2010 , 10, 1540-1547	3.4	12
23	Synthesis of MnPO4IH2O by refluxing process at atmospheric pressure. <i>Solid State Sciences</i> , 2010 , 12, 808-813	3.4	17
22	Shape-controlled Synthesis of Nanostructure Ramsdellite-type Manganese Oxide at Atmospheric Pressure. <i>Chinese Journal of Chemistry</i> , 2010 , 28, 2301-2307	4.9	2
21	Cobalt-doped todorokites prepared by refluxing at atmospheric pressure as cathode materials for Li batteries. <i>Electrochimica Acta</i> , 2010 , 55, 9157-9165	6.7	17
20	Factors governing the formation of lithiophorite at atmospheric pressure. <i>Clays and Clay Minerals</i> , 2009 , 57, 353-360	2.1	8
19	Relationship between Pb2+ adsorption and average Mn oxidation state in synthetic birnessites. <i>Clays and Clay Minerals</i> , 2009 , 57, 513-520	2.1	64
18	Relation of lead adsorption on birnessites with different average oxidation states of manganese and release of Mn2+/H+/K+. <i>Journal of Environmental Sciences</i> , 2009 , 21, 520-6	6.4	19
17	Synthesis of todorokite-type manganese oxide from Cu-buserite by controlling the pH at atmospheric pressure. <i>Microporous and Mesoporous Materials</i> , 2009 , 117, 41-47	5.3	20
16	Interaction between humic acid and lysozyme, studied by dynamic light scattering and isothermal titration calorimetry. <i>Environmental Science & Environmental & Enviro</i>	10.3	65

15	Birnessites with different average manganese oxidation states synthesized, characterized, and transformed to todorokite at atmospheric pressure. <i>Clays and Clay Minerals</i> , 2009 , 57, 715-724	2.1	32
14	Geochemical characteristics of selected elements in ironfinanganese cutans and matrices of Alfisols in central China. <i>Journal of Geochemical Exploration</i> , 2009 , 103, 30-36	3.8	11
13	Characteristics of Iron-Manganese Cutans and Matrices in Alfisols and Ultisols of Subtropical China. <i>Soil Science</i> , 2009 , 174, 238-246	0.9	3
12	Characteristics of micromorphology and element distribution of ironthanganese cutans in typical soils of subtropical China. <i>Geoderma</i> , 2008 , 146, 40-47	6.7	33
11	Influence of Mn(III) availability on the phase transformation from layered buserite to tunnel-structured todorokite. <i>Clays and Clay Minerals</i> , 2008 , 56, 397-403	2.1	37
10	Investigation on electrochemical reduction process of Nb2O5 powder in molten CaCl2 with metallic cavity electrode. <i>Electrochimica Acta</i> , 2008 , 53, 4074-4081	6.7	15
9	Binding of cationic surfactants to humic substances. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2007 , 306, 29-39	5.1	51
8	Composition and transformation of 1.4 nm minerals in cutan and matrix of alfisols in central China. <i>Journal of Soils and Sediments</i> , 2007 , 7, 240-246	3.4	16
7	Effect of arsenate on adsorption of Cd(II) by two variable charge soils. <i>Chemosphere</i> , 2007 , 67, 1949-55	8.4	25
6	Effects of reaction conditions on the formation of todorokite at atmospheric pressure. <i>Clays and Clay Minerals</i> , 2006 , 54, 605-615	2.1	15
5	Elemental Composition and Geochemical Characteristics of Iron-Manganese Nodules in Main Soils of China . <i>Pedosphere</i> , 2006 , 16, 72-81	5	50
4	Adsorption and redox reactions of heavy metals on Fe-Mn nodules from Chinese soils. <i>Journal of Colloid and Interface Science</i> , 2005 , 284, 600-5	9.3	67
3	Pathways of birnessite formation in alkali medium. <i>Science in China Series D: Earth Sciences</i> , 2005 , 48, 1438-1451		27
2	Factors governing formation of todorokite at atmospheric pressure. <i>Science in China Series D: Earth Sciences</i> , 2005 , 48, 1678-1689		7
1	Synthesis of todorokite by refluxing process and its primary characteristics. <i>Science in China Series</i> D: Farth Sciences. 2004 , 47, 760-768		8