Yu V Yasyukevich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3879050/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ionospheric Disturbances and Irregularities During the 25–26 August 2018 Geomagnetic Storm. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	13
2	MITIGATOR: GNSS-Based System for Remote Sensing of Ionospheric Absolute Total Electron Content. Universe, 2022, 8, 98.	0.9	5
3	Low-Latitude Ionospheric Responses and Coupling to the February 2014 Multiphase Geomagnetic Storm from GNSS, Magnetometers, and Space Weather Data. Atmosphere, 2022, 13, 518.	1.0	10
4	Multi-frequency phase-only PPP-RTK model applied to BeiDou data. GPS Solutions, 2022, 26, 1.	2.2	13
5	Assessing the Performance of Models for Ionospheric Correction for Single-frequency GNSS Positioning. , 2022, , .		1
6	Features of Winter Stratosphere Small-Scale Disturbance during Sudden Stratospheric Warmings. Remote Sensing, 2022, 14, 2798.	1.8	2
7	GIMLi: Clobal Ionospheric total electron content model based on machine learning. GPS Solutions, 2021, 25, 1.	2.2	24
8	How modernized and strengthened GPS signals enhance the system performance during solar radio bursts. GPS Solutions, 2021, 25, 1.	2.2	15
9	Space weather: risk factors for Global Navigation Satellite Systems. SolneÄno-zemnaâ Fizika, 2021, 7, 28-47.	0.2	14
10	Space weather: risk factors for Global Navigation Satellite Systems. SolneÄno-zemnaâ Fizika, 2021, 7, 30-52.	0.1	7
11	Galileo E5 AltBOC Signals: Application for Single-Frequency Total Electron Content Estimations. Remote Sensing, 2021, 13, 3973.	1.8	6
12	Experimental Estimation of Deviation Frequency within the Spectrum of Scintillations of the Carrier Phase of GNSS Signals. Remote Sensing, 2021, 13, 5017.	1.8	2
13	Efficiency of updating the ionospheric models using total electron content at mid- and sub-auroral latitudes. GPS Solutions, 2020, 24, 1.	2.2	10
14	GPS Positioning Accuracy in Different Modes with Active Forcing on the Ionosphere from the Sura High-Power HF Radiation. Radiophysics and Quantum Electronics, 2020, 62, 807-819.	0.1	5
15	Statistical Analysis of the Ionospheric Response to Geomagnetic Storms Based on the Data from Global Ionospheric Maps. Russian Journal of Physical Chemistry B, 2020, 14, 862-872.	0.2	6
16	Statistical Analysis and Interpretation of High-, Mid- and Low-Latitude Responses in Regional Electron Content to Geomagnetic Storms. Atmosphere, 2020, 11, 1308.	1.0	19
17	GNSS-Based Non-Negative Absolute Ionosphere Total Electron Content, its Spatial Gradients, Time Derivatives and Differential Code Biases: Bounded-Variable Least-Squares and Taylor Series. Sensors, 2020, 20, 5702.	2.1	26
18	Small-Scale Ionospheric Irregularities of Auroral Origin at Mid-latitudes during the 22 June 2015 Magnetic Storm and Their Effect on GPS Positioning. Remote Sensing, 2020, 12, 1579.	1.8	26

#	Article	IF	CITATIONS
19	SIMuRG: System for Ionosphere Monitoring and Research from GNSS. GPS Solutions, 2020, 24, 1.	2.2	30
20	Wave Signatures in Total Electron Content Variations: Filtering Problems. Remote Sensing, 2020, 12, 1340.	1.8	14
21	Modern heating facility for research into the mid-latitude ionosphere. SolneÄno-zemnaâ Fizika, 2020, 6, 49-62.	0.2	3
22	Modern heating facility for research into the mid-latitude ionosphere. SolneÄno-zemnaâ Fizika, 2020, 6, 61-78.	0.2	0
23	Global Navigation Satellite Systems for Ionospheric Error Correction in Radio-Engineering Systems: Challenges and Prospects. Radiophysics and Quantum Electronics, 2020, 63, 177-190.	0.1	1
24	Changes in the GNSS precise point positioning accuracy during a strong geomagnetic storm. E3S Web of Conferences, 2020, 196, 01001.	0.2	4
25	Application of BDS-GEO for studying TEC variability in equatorial ionosphere on different time scales. Advances in Space Research, 2019, 63, 257-269.	1.2	16
26	The Second-Order Derivative of GPS Carrier Phase as a Promising Means for Ionospheric Scintillation Research. Pure and Applied Geophysics, 2019, 176, 4555-4573.	0.8	11
27	Updating Ionosphere Models Using Ionosonde and GNSS Data for HF Pr opagation Simulation. , 2019, , .		0
28	Statistical Analysis of Ionospheric Global Electron Content Response to Geomagnetic Storms. , 2019, , .		2
29	Ionosphere as a Medium of Radio Wave Propagation in Different Applied Tasks. , 2019, , .		2
30	Correlation between Total and Plasmasphere Electron Content and Indexes of Solar and Geomagnetic Activity. , 2019, , .		2
31	Can we detect X/M/C-class solar flares from global navigation satellite system data?. Results in Physics, 2019, 12, 1004-1005.	2.0	3
32	Altitudinal Extent of Winter Anomaly and Its Manifestation in the Total Electron Content. Russian Journal of Physical Chemistry B, 2019, 13, 884-891.	0.2	3
33	Winter anomaly in <i>N</i> _{<i>m</i>} F ₂ and TEC: when and where it can occur. Journal of Space Weather and Space Climate, 2018, 8, A45.	1.1	29
34	Tool for Creating Maps of GNSS Total Electron Content Variations. , 2018, , .		4
35	Global Electron Content in the 23rd and 24th Solar Cycles. , 2018, , .		3
36	WTEC: A new index to estimate the intensity of ionospheric disturbances. Results in Physics, 2018, 11, 1056-1057.	2.0	9

#	Article	IF	CITATIONS
37	Towards Reliable Ionospheric Total Electron Content Nowcasting. , 2018, , .		1
38	GNSS Scintillations in Siberia During 2014-2017. , 2018, , .		0
39	Ground-Based GNSS Data for the lonosphere Model Correction at High-Latitudes. , 2018, , .		1
40	Random Forest, Support Vector Regression and Gradient Boosting Methods for Ionosphere Total Electron Content Nowcasting Problem at Mid-Latitudes. , 2018, , .		3
41	Correction of IRI-Plas and NeQuick Empirical Ionospheric Models at High Latitudes Using Data from the Remote Receivers of Global Navigation Satellite System Signals. Russian Journal of Physical Chemistry B, 2018, 12, 776-781.	0.2	7
42	The 6 September 2017 X Class Solar Flares and Their Impacts on the Ionosphere, GNSS, and HF Radio Wave Propagation. Space Weather, 2018, 16, 1013-1027.	1.3	96
43	SibNet — Siberian Global Navigation Satellite System Network: Current state. SolneÄno-zemnaâ Fizika, 2018, 4, 63-72.	0.2	19
44	Selecting the key control parameters for the ionospheric total electron content nowcasting. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Iz Kosmosa, 2018, 15, 263-272.	0.1	0
45	SibNet — Siberian Global Navigation Satellite System Network: Current state. SolneÄno-zemnaâ Fizika, 2018, 4, 82-94.	0.2	2
46	Estimating the absolute total electron content from the single-frequency GPS/GLONASS data. , 2017, , .		1
47	The method to use GPS observations for statistical evaluation of the diagnostic slips level of total electron content at different latitudes. , 2017, , .		0
48	Determination of the Level of Diagnostic Slips of the Total Electron Content from GPS Observations in Different Latitudinal Regions. Moscow University Physics Bulletin (English Translation of Vestnik) Tj ETQq0 0) rg b.Ti /Ove	erlaack 10 Tf 5
49	Regular TEC variations in mid-latitude and polar regions. , 2017, , .		2
50	Simultaneous observation of UHV and VHF radio signal ionospheric scintillations in the magnetic zenith. , 2017, , .		0
51	Similarity and differences in morphology and mechanisms of the <i>fo</i> F2 and TEC disturbances during the geomagnetic storms on 26–30ÂSeptemberÂ2011. Annales Geophysicae, 2017, 35, 923-938.	0.6	23
52	GPS/GLONASS total electron content based methods for ionospheric error compensation for the radio communication systems. Vestnik of Volga State University of Technology Ser Radio Engineering and Infocommunication Systems, 2017, 34, .	0.1	4
53	Ionosphere and magnetosphere disturbance impact on operation slips of global navigation satellite systems. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Iz Kosmosa, 2017, 14, 88-98.	0.1	3
54	Estimating the absolute total electron content based on single-frequency satellite radio navigation GPS/GLONASS data. SolneÄno-zemnaÄ¢ Fizika, 2017, 3, 97-103.	0.2	0

#	Article	IF	CITATIONS
55	Estimating the absolute total electron content based on single-frequency satellite radio navigation GPS/GLONASS data. SolneÄno-zemnaâ Fizika, 2017, 3, 128-137.	0.2	4
56	lonosphere and magnetosphere disturbance impact on operation slips of Global navigation satellite systems at mid- and high-latitudes. , 2017, , .		2
57	Determining the absolute total electron content from the single-frequency GPS/GLONASS data. , 2017, ,		0
58	Ionospheric variations during typhoons of autumn 2016. , 2017, , .		0
59	Detecting the small-scale ionospheric irregularities based on GNSS data. , 2016, , .		Ο
60	Diurnal and longitudinal variations in the earth's ionosphere in the period of solstice in conditions of a deep minimum of solar activity. Cosmic Research, 2016, 54, 8-19.	0.2	5
61	Experimental observations of carrier phase acceleration in conditions of polar ionosphere. Journal of Communications Technology and Electronics, 2016, 61, 1086-1090.	0.2	0
62	lonospheric TEC estimation with the signals of various geostationary navigational satellites. GPS Solutions, 2016, 20, 877-884.	2.2	28
63	Effect of magnetic storms and substorms on GPS slips at high latitudes. Cosmic Research, 2016, 54, 20-30.	0.2	27
64	Estimating the absolute total electron content, spatial gradients and time derivative from the GNSS data. , 2015, , .		1
65	Systematic changing and variations of GPS/GLONASS differential code biases. , 2015, , .		2
66	lonospheric Effects of Geomagnetic Storms on 26–30 September 2011 in the Different Longitudinal Sectors and Their Impact on the HF Radio Wave Propagation. , 2015, , .		0
67	Estimating the total electron content absolute value from the GPS/GLONASS data. Results in Physics, 2015, 5, 32-33.	2.0	53
68	Variability of GPS/GLONASS differential code biases. Results in Physics, 2015, 5, 9-10.	2.0	39
69	The response of the ionosphere to the earthquake in Japan on March 11, 2011 as estimated by different GPS-based methods. Geomagnetism and Aeronomy, 2015, 55, 108-117.	0.2	13
70	Mid-latitude Summer Evening Anomaly (MSEA) in F2 layer electron density and Total Electron Content at solar minimum. Advances in Space Research, 2015, 56, 1951-1960.	1.2	17
71	Influence of GPS/GLONASS differential code biases on the determination accuracy of the absolute total electron content in the ionosphere. Geomagnetism and Aeronomy, 2015, 55, 763-769.	0.2	53
72	Investigation of SBAS L1/L5 Signals and Their Application to the Ionospheric TEC Studies. IEEE Geoscience and Remote Sensing Letters, 2015, 12, 547-551.	1.4	16

#	Article	IF	CITATIONS
73	Using network technology for studying the ionosphere. SolneÄno-zemnaâ Fizika, 2015, 1, 21-27.	0.2	1
74	Global distribution of GPS losses of phase lock and total electron content slips during the 2005 May 15 and the 2003 November 20 magnetic storms. SolneÄno-zemnaâ Fizika, 2015, 1, 58-65.	0.2	2
75	Controlling current conditions of signal propagation of navigation satellites. , 2014, , .		Ο
76	First experiments on studying the condition of the atmosphere and of the ionosphere in the Baikal region within nighttime during the seismic vibrator operation. , 2014, , .		1
77	Ionospheric TEC estimations using dual frequency coherent L1/L5 signals from the geostationary SBAS satellites. , 2014, , .		Ο
78	Geomagnetic storms, superâ€storms, and their impacts on GPSâ€based navigation systems. Space Weather, 2014, 12, 508-525.	1.3	90
79	The Method of Real-Time Control of Positioning Quality for the Transportation Applications. , 2013, , .		0
80	lonospheric response to solar flares of C and M classes in January–February 2010. Cosmic Research, 2013, 51, 114-123.	0.2	12
81	A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena. Journal of Space Weather and Space Climate, 2013, 3, A27.	1.1	114
82	lonospheric super-bubble effects on the GPS positioning relative to the orientation of signal path and geomagnetic field direction. GPS Solutions, 2012, 16, 181-189.	2.2	35
83	Deterioration in the accuracy of GPS system positioning due to the effect of ionospheric bubbles. Geomagnetism and Aeronomy, 2011, 51, 1010-1013.	0.2	1
84	The mid-latitude field-aligned disturbances and their effect on differential GPS and VLBI. Advances in Space Research, 2011, 47, 1804-1813.	1.2	9
85	First evidence of anisotropy of GPS phase slips caused by the mid-latitude field-aligned ionospheric irregularities. Advances in Space Research, 2011, 47, 1674-1680.	1.2	14
86	A statistical study of medium-scale ionospheric disturbances generated by solar terminator registered over Japan in 2008. , 2011, , .		1
87	Duration of wave disturbances generated by solar terminator in magneto-conjugate areas. , 2011, , .		5
88	Travelling wave packets generated by the solar terminator in the upper atmosphere. Atmospheric and Oceanic Optics, 2010, 23, 21-27.	0.6	3
89	Cross testing of ionosphere models IRI-2001 and IRI-2007, data from satellite altimeters (Topex/Poseidon and Jason-1) and global ionosphere maps. Advances in Space Research, 2010, 46, 990-1007.	1.2	17
90	MHD nature of ionospheric wave packets generated by the solar terminator. Geomagnetism and Aeronomy, 2010, 50, 79-95.	0.2	4

#	Article	IF	CITATIONS
91	10.1007/s11478-008-2008-1. , 2010, 48, 187.		0
92	The first GPS-TEC imaging of the space structure of MS wave packets excited by the solar terminator. Annales Geophysicae, 2009, 27, 1521-1525.	0.6	35
93	New field of application of the IRI modeling – Determination of ionosphere transfer characteristic for radio astronomical signals. Advances in Space Research, 2009, 43, 1652-1659.	1.2	3
94	Testing of the international reference ionosphere model using the data of dual-frequency satellite altimeters "Topexâ€∤"Poseidon―and "Jason-1― Radiophysics and Quantum Electronics, 2009, 52, 3	41 ⁰ 3153.	4
95	Spatio-temporal structure of the wave packets generated by the solar terminator. Advances in Space Research, 2009, 44, 824-835.	1.2	22
96	The magnetohydrodynamic nature of ionospheric wave packets excited by the solar terminator. Doklady Earth Sciences, 2009, 429, 1354-1358.	0.2	0
97	MHD nature of nightâ€ŧime MSTIDs excited by the solar terminator. Geophysical Research Letters, 2009, 36, .	1.5	44
98	Using GPS–GLONASS–GALILEO data and IRI modeling for ionospheric calibration of radio telescopes and radio interferometers. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70, 1949-1962.	0.6	19
99	Dynamics of global electron content in 1998–2005 derived from global GPS data and IRI modeling. Advances in Space Research, 2008, 42, 763-769.	1.2	40
100	Adaptive radio astronomy. Doklady Physics, 2008, 53, 211-215.	0.2	1
101	Global electron content during solar cycle 23. Geomagnetism and Aeronomy, 2008, 48, 187-200.	0.2	16
102	Global electron content: a new conception to track solar activity. Annales Geophysicae, 2008, 26, 335-344.	0.6	159
103	<title>Influence of the ionosphere on radio astronomical signals according to GPS sounding and ionospheric modeling</title> . Proceedings of SPIE, 2007, , .	0.8	1
104	Ionospheric Faraday amplitude modulation of radio-astronomical signals. I. Solar radio emission. Radiophysics and Quantum Electronics, 2007, 50, 929-941.	0.1	0
105_	SHARED RESEARCH FACILITIES "SOLAR-TERRESTRIAL PHYSICS AND CONTROL OF NEAR-EARTH SPACE" ("THE) Tj	ETQ:g1 1 C).784314 rgB