Maurizio Pesce

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3878897/publications.pdf Version: 2024-02-01

90395
73
ex g-index
7389
anked citing authors

#	Article	IF	CITATIONS
1	Animal models and animal-free innovations for cardiovascular research: current status and routes to be explored. Consensus document of the ESC Working Group on Myocardial Function and the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2022, 118, 3016-3051.	1.8	30
2	Engineering Efforts to Refine Compatibility and Duration of Aortic Valve Replacements: An Overview of Previous Expectations and New Promises. Frontiers in Cardiovascular Medicine, 2022, 9, 863136.	1.1	3
3	Lithotripsy of Calcified Aortic Valve Leaflets by a Novel Ultrasound Transcatheter-Based Device. Frontiers in Cardiovascular Medicine, 2022, 9, 850393.	1.1	5
4	Mechanical Strain Induces Transcriptomic Reprogramming of Saphenous Vein Progenitors. Frontiers in Cardiovascular Medicine, 2022, 9, .	1.1	0
5	Reduction of Cardiac Fibrosis by Interference With YAP-Dependent Transactivation. Circulation Research, 2022, 131, 239-257.	2.0	26
6	Improving translational research in sex-specific effects of comorbidities and risk factors in ischaemic heart disease and cardioprotection: position paper and recommendations of the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2021, 117, 367-385.	1.8	53
7	A fluorogenic peptide-based smartprobe for the detection of neutrophil extracellular traps and inflammation. Chemical Communications, 2021, 57, 97-100.	2.2	18
8	From dissection of fibrotic pathways to assessment of drug interactions to reduce cardiac fibrosis and heart failure. Current Research in Pharmacology and Drug Discovery, 2021, 2, 100036.	1.7	7
9	Trans-Catheter Double-Frequency Ultrasound Ablator for The Treatment of Aortic Valve Leaflets Calcification. Biomedical Journal of Scientific & Technical Research, 2021, 33, .	0.0	3
10	Digital PCR for high sensitivity viral detection in false-negative SARS-CoV-2 patients. Scientific Reports, 2021, 11, 4310.	1.6	21
11	Stiffness and Aging in Cardiovascular Diseases: The Dangerous Relationship between Force and Senescence. International Journal of Molecular Sciences, 2021, 22, 3404.	1.8	18
12	Editorial: Bio-materials for Cardiovascular Diseases. Frontiers in Cardiovascular Medicine, 2021, 8, 670964.	1.1	0
13	Human cardiosphere-derived stromal cells exposed to SARS-CoV-2 evolve into hyper-inflammatory/ <i>pro</i> -fibrotic phenotype and produce infective viral particles depending on the levels of ACE2 receptor expression. Cardiovascular Research, 2021, 117, 1557-1566.	1.8	21
14	COVID-19-related cardiac complications from clinical evidences to basic mechanisms: opinion paper of the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2021, 117, 2148-2160.	1.8	26
15	Vascular dysfunction and pathology: focus on mechanical forces. Vascular Biology (Bristol,) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 Tf
16	Nanotechnology, a booster for the multitarget drug verteporfin. Journal of Drug Delivery Science and Technology, 2021, 64, 102562.	1.4	2
17	Circadian rhythms in ischaemic heart disease: key aspects for preclinical and translational research: position paper of the ESC working group on cellular biology of the heart. Cardiovascular Research, 2021, , .	1.8	10
18	PDMS Substrates with tunable stiffness for cardiac mechanobiology investigation: A nanoindentation study. Biomedical Science and Engineering, 2021, 4, .	0.0	0

#	Article	IF	CITATIONS
19	Carbon Nanotubes Substrates Alleviate Pro-Calcific Evolution in Porcine Valve Interstitial Cells. Nanomaterials, 2021, 11, 2724.	1.9	5
20	The Complex Interplay of Inflammation, Metabolism, Epigenetics, and Sex in Calcific Disease of the Aortic Valve. Frontiers in Cardiovascular Medicine, 2021, 8, 791646.	1.1	8
21	Cell-Based Mechanosensation, Epigenetics, and Non-Coding RNAs in Progression of Cardiac Fibrosis. International Journal of Molecular Sciences, 2020, 21, 28.	1.8	20
22	Harnessing Mechanosensation in Next Generation Cardiovascular Tissue Engineering. Biomolecules, 2020, 10, 1419.	1.8	12
23	Cardiomyocyte ageing and cardioprotection: consensus document from the ESC working groups cell biology of the heart and myocardial function. Cardiovascular Research, 2020, 116, 1835-1849.	1.8	34
24	Culture Into Perfusion-Assisted Bioreactor Promotes Valve-Like Tissue Maturation of Recellularized Pericardial Membrane. Frontiers in Cardiovascular Medicine, 2020, 7, 80.	1.1	9
25	Coronary artery mechanics induces human saphenous vein remodelling <i>via</i> recruitment of adventitial myofibroblast-like cells mediated by Thrombospondin-1. Theranostics, 2020, 10, 2597-2611.	4.6	23
26	When Stiffness Matters: Mechanosensing in Heart Development and Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 334.	1.8	50
27	ESC Working Group on Cellular Biology of the Heart: position paper for Cardiovascular Research: tissue engineering strategies combined with cell therapies for cardiac repair in ischaemic heart disease and heart failure. Cardiovascular Research, 2019, 115, 488-500.	1.8	90
28	Automated Segmentation of Fluorescence Microscopy Images for 3D Cell Detection in human-derived Cardiospheres. Scientific Reports, 2019, 9, 6644.	1.6	44
29	Abnormal DNA Methylation Induced by Hyperglycemia Reduces CXCR4 Gene Expression in CD34+Stem Cells. Journal of the American Heart Association, 2019, 8, e010012.	1.6	26
30	Mechanotransduction in the Cardiovascular System: From Developmental Origins to Homeostasis and Pathology. Cells, 2019, 8, 1607.	1.8	55
31	Epigenetic Erasing and Pancreatic Differentiation of Dermal Fibroblasts into Insulin-Producing Cells are Boosted by the Use of Low-Stiffness Substrate. Stem Cell Reviews and Reports, 2018, 14, 398-411.	5.6	32
32	Aortic valve cell seeding into decellularized animal pericardium by perfusion-assisted bioreactor. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1481-1493.	1.3	18
33	Acrylate-based materials for heart valve scaffold engineering. Biomaterials Science, 2018, 6, 154-167.	2.6	12
34	Versican is differentially regulated in the adventitial and medial layers of human vein grafts. PLoS ONE, 2018, 13, e0204045.	1.1	4
35	Cell based mechanosensing in vascular patho-biology: More than a simple go-with the flow. Vascular Pharmacology, 2018, 111, 7-14.	1.0	13
36	Activation of human aortic valve interstitial cells by local stiffness involves YAP-dependent transcriptional signaling. Biomaterials, 2018, 181, 268-279.	5.7	31

#	Article	IF	CITATIONS
37	Mechanotransduction in Coronary Vein Graft Disease. Frontiers in Cardiovascular Medicine, 2018, 5, 20.	1.1	15
38	Substrate Chemistry and Morphology Influence the Valvular Interstitial Cells Mechanobiology. Biophysical Journal, 2017, 112, 437a.	0.2	1
39	Stem Cell Spheroids and Ex Vivo Niche Modeling: Rationalization and Scaling-Up. Journal of Cardiovascular Translational Research, 2017, 10, 150-166.	1.1	30
40	Cardiac Mechanoperception: A Life-Long Story from Early Beats to Aging and Failure. Stem Cells and Development, 2017, 26, 77-90.	1.1	26
41	Full Mimicking of Coronary Hemodynamics for Ex-Vivo Stimulation of Human Saphenous Veins. Annals of Biomedical Engineering, 2017, 45, 884-897.	1.3	19
42	Feeling the right force: How to contextualize the cell mechanical behavior in physiologic turnover and pathologic evolution of the cardiovascular system. , 2017, 171, 75-82.		23
43	Abstract 475: Human Saphenous Vein Progenitor Cells Are Susceptible to Mechanical Stimulation. Novel Insights in Pathologic Programming of Saphenous Vein Bypass Graft Disease. Circulation Research, 2017, 121, .	2.0	0
44	Abstract 38: Bioreactor Based Approach for Valve Tissue Engineering: Novel Application of Decellularized Porcine Pericardium. Circulation Research, 2017, 121, .	2.0	0
45	Abstract 373: Effects of Coronary Wall Mechanics on Smooth Muscle Cell Phenotypic Switch and CD44 ⁺ Mesenchymal Cell Repopulation in Saphenous Vein Grafts. Circulation Research, 2017, 121, .	2.0	0
46	A compact and automated <i>ex vivo</i> vessel culture system for the pulsatile pressure conditioning of human saphenous veins. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, E204-E215.	1.3	22
47	Feasibility of pig and humanâ€derived aortic valve interstitial cells seeding on fixativeâ€free decellularized animal pericardium. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 345-356.	1.6	19
48	Onâ€chip assessment of human primary cardiac fibroblasts proliferative responses to uniaxial cyclic mechanical strain. Biotechnology and Bioengineering, 2016, 113, 859-869.	1.7	50
49	Novel Concepts in Design and Fabrication of â€`Living' Bioprosthetic Heart Valves: From Cell Mechanosensing to Advanced Tissue Engineering Applications. , 2016, , 1-12.		2
50	Human Saphenous Vein Response to Trans-wall Oxygen Gradients in a Novel Ex Vivo Conditioning Platform. Annals of Biomedical Engineering, 2016, 44, 1449-1461.	1.3	10
51	Microbioreactor for cell cultures under uniaxial cyclic strain. , 2015, , .		0
52	Abnormal megakaryopoiesis and platelet function in cyclooxygenase-2-deficient mice. Thrombosis and Haemostasis, 2015, 114, 1218-1229.	1.8	11
53	Adventitial Vessel Growth and Progenitor Cells Activation in an Ex Vivo Culture System Mimicking Human Saphenous Vein Wall Strain after Coronary Artery Bypass Grafting. PLoS ONE, 2015, 10, e0117409.	1.1	26
54	Inflammatory environment and oxidized LDL convert circulating human proangiogenic cells into functional antigen-presenting cells. Journal of Leukocyte Biology, 2015, 98, 409-421.	1.5	4

#	Article	IF	CITATIONS
55	A lumped-parameter approach for designing a novel pulsatile bioreactor for ex-vivo studies of human saphenous vein remodeling. , 2015, 2015, 2588-91.		1
56	Epigenetic Profile of Human Adventitial Progenitor Cells Correlates With Therapeutic Outcomes in a Mouse Model of Limb Ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 675-688.	1.1	38
57	Expression of dual Nucleotides/Cysteinyl‣eukotrienes Receptor <scp>GPR</scp> 17 in early trafficking of cardiac stromal cells after myocardial infarction. Journal of Cellular and Molecular Medicine, 2014, 18, 1785-1796.	1.6	18
58	G-CSF treatment for STEMI: final 3-year follow-up of the randomised placebo-controlled STEM-AMI trial. Heart, 2014, 100, 574-581.	1.2	18
59	When Stemness Meets Engineering: Towards "Niche―Control of Stem Cell Functions for Enhanced Cardiovascular Regeneration. , 2013, , 457-473.		0
60	Epigenetic Programming and Risk: The Birthplace of Cardiovascular Disease?. Stem Cell Reviews and Reports, 2013, 9, 241-253.	5.6	25
61	Growth Induction and Low-Oxygen Apoptosis Inhibition of Human CD34+Progenitors in Collagen Gels. BioMed Research International, 2013, 2013, 1-5.	0.9	2
62	Mechanical Compliance and Immunological Compatibility of Fixative-Free Decellularized/Cryopreserved Human Pericardium. PLoS ONE, 2013, 8, e64769.	1.1	39
63	Combining Stem Cells and Tissue Engineering in Cardiovascular Repair - a Step Forward to Derivation of Novel Implants with Enhanced Function and Self-Renewal Characteristics. Recent Patents on Cardiovascular Drug Discovery, 2012, 7, 10-20.	1.5	10
64	Tools and Procedures for Ex Vivo Vein Arterialization, Preconditioning and Tissue Engineering: A Step Forward to Translation to Combat the Consequences of Vascular Graft Remodeling. Recent Patents on Cardiovascular Drug Discovery, 2012, 7, 186-195.	1.5	13
65	Patient profile modulates cardiac c-kit+ progenitor cell availability and amplification potential. Translational Research, 2012, 160, 363-373.	2.2	25
66	Natural Membranes as Scaffold for Biocompatible Aortic Valve Leaflets. , 2012, , 123-140.		0
67	Histone Deacetylase Inhibition Enhances Self Renewal and Cardioprotection by Human Cord Blood-Derived CD34+ Cells. PLoS ONE, 2011, 6, e22158.	1.1	21
68	Endothelial and cardiac progenitors: Boosting, conditioning and (re)programming for cardiovascular repair. , 2011, 129, 50-61.		26
69	Endothelial Fate and Angiogenic Properties of Human CD34+Progenitor Cells in Zebrafish. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1589-1597.	1.1	30
70	C-kit+ cardiac progenitors exhibit mesenchymal markers and preferential cardiovascular commitment. Cardiovascular Research, 2011, 89, 362-373.	1.8	77
71	Human cord blood CD34+ progenitor cells acquire functional cardiac properties through a cell fusion process. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1875-H1884.	1.5	29
72	Cardiac Stem Cells: Tales, Mysteries and Promises in Heart Generation and Regeneration. , 2011, , 265-286.		1

#	Article	IF	CITATIONS
73	Endothelial Progenitor Cells from Cord Blood: Magic Bullets Against Ischemia?. , 2011, , 205-213.		Ο
74	GMPâ€based CD133 ⁺ cells isolation maintains progenitor angiogenic properties and enhances standardization in cardiovascular cell therapy. Journal of Cellular and Molecular Medicine, 2010, 14, 1619-1634.	1.6	16
75	Gene transfer into human cord bloodâ^'derived CD34+ cells by adeno-associated viral vectors. Experimental Hematology, 2010, 38, 707-717.	0.2	17
76	Granulocyte colonyâ€stimulating factor attenuates left ventricular remodelling after acute anterior STEMI: results of the singleâ€blind, randomized, placeboâ€controlled multicentre STem cEll Mobilization in Acute Myocardial Infarction (STEMâ€AMI) Trial. European Journal of Heart Failure, 2010, 12, 1111-1121.	2.9	48
77	Magnetic resonance imaging of human endothelial progenitors reveals opposite effects on vascular and muscle regeneration into ischaemic tissues. Cardiovascular Research, 2010, 85, 503-513.	1.8	21
78	When Cells Become a Drug. Endothelial Progenitor Cells for Cardiovascular Therapy: Aims and Reality. Recent Patents on Cardiovascular Drug Discovery, 2010, 5, 1-10.	1.5	7
79	Altered SDF-1-mediated differentiation of bone marrow-derived endothelial progenitor cells in diabetes mellitus. Journal of Cellular and Molecular Medicine, 2009, 13, 3405-3414.	1.6	36
80	Endothelial progenitor cells and cardiovascular homeostasis: Clinical implications. International Journal of Cardiology, 2009, 131, 156-167.	0.8	55
81	Functional properties of cells obtained from human cord blood CD34 ⁺ stem cells and mouse cardiac myocytes in coculture. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H1541-H1549.	1.5	12
82	Direct Minimally Invasive Intramyocardial Injection of Bone Marrow-Derived AC133+ Stem Cells in Patients with Refractory Ischemia: Preliminary Results. Thoracic and Cardiovascular Surgeon, 2008, 56, 71-76.	0.4	61
83	Oct-4 Expression in Adult Human Differentiated Cells Challenges Its Role as a Pure Stem Cell Marker. Stem Cells, 2007, 25, 1675-1680.	1.4	151
84	Abstract 466: Valproic Acid Enhances Human Cord Blood CD34 + Cell Differentiation Toward The Endothelial Phenotype. Circulation, 2007, 116, .	1.6	1
85	Increased Melanoma Growth and Metastasis Spreading in Mice Overexpressing Placenta Growth Factor. American Journal of Pathology, 2006, 169, 643-654.	1.9	94
86	Placenta Growth Factor in Diabetic Wound Healing. American Journal of Pathology, 2006, 169, 1167-1182.	1.9	106
87	Electrophysiological properties of mouse bone marrow c-kit cells co-cultured onto neonatal cardiac myocytes. Cardiovascular Research, 2005, 66, 482-492.	1.8	41
88	Long-lasting improvement of myocardial perfusion and chronic refractory angina after autologous intramyocardial PBSC transplantation. Cytotherapy, 2005, 7, 494-496.	0.3	6
89	Oct4 is required for primordial germ cell survival. EMBO Reports, 2004, 5, 1078-1083.	2.0	513
90	SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood, 2004, 104, 3472-3482.	0.6	489

#	Article	IF	CITATIONS
91	Myoendothelial Differentiation of Human Umbilical Cord Blood–Derived Stem Cells in Ischemic Limb Tissues. Circulation Research, 2003, 93, e51-62.	2.0	176
92	Derivation in culture of primordial germ cells from cells of the mouse epiblast: phenotypic induction and growth control by Bmp4 signalling. Mechanisms of Development, 2002, 112, 15-24.	1.7	78
93	Oct-4: Gatekeeper in the Beginnings of Mammalian Development. Stem Cells, 2001, 19, 271-278.	1.4	719
94	Oct-4: Control of totipotency and germline determination. Molecular Reproduction and Development, 2000, 55, 452-457.	1.0	232
95	Phage Display Screening Reveals an Association Between Germline-specific Transcription Factor Oct-4 and Multiple Cellular Proteins. Journal of Molecular Biology, 2000, 304, 529-540.	2.0	59
96	Oct-4: Lessons of Totipotency from Embryonic Stem Cells. Cells Tissues Organs, 1999, 165, 144-152.	1.3	89
97	Bcl-2 and Bax regulation of apoptosis in germ cells during prenatal oogenesis in the mouse embryo. Cell Death and Differentiation, 1999, 6, 908-915.	5.0	116
98	In line with our ancestors: Oct-4 and the mammalian germ. BioEssays, 1998, 20, 722-732.	1.2	212
99	In vitro adhesiveness of mouse primordial germ cells to cellular and extracellular matrix component substrata. Microscopy Research and Technique, 1998, 43, 258-264.	1.2	19
100	Differential expression of the Oct-4 transcription factor during mouse germ cell differentiation. Mechanisms of Development, 1998, 71, 89-98.	1.7	455
101	In line with our ancestors: Oct-4 and the mammalian germ. , 1998, 20, 722.		2
102	Identification of a Promoter Region Generating Sry Circular Transcripts Both in Germ Cells from Male Adult Mice and in Male Mouse Embryonal Gonads1. Biology of Reproduction, 1997, 57, 1128-1135.	1.2	36
103	The c-kit receptor is involved in the adhesion of mouse primordial germ cells to somatic cells in culture. Mechanisms of Development, 1997, 68, 37-44.	1.7	75
104	Stem Cell Factor Regulation of Apoptosis in Mouse Primordial Germ Cells. , 1997, , 19-31.		4
105	Purification of Mouse Primordial Germ Cells by MiniMACS Magnetic Separation System. Developmental Biology, 1995, 170, 722-725.	0.9	106
106	Immunoaffinity Purification of Migratory Mouse Primordial Germ Cells. Experimental Cell Research, 1995, 216, 277-279.	1.2	15
107	Apoptosis in mouse primordial germ cells: a study by transmission and scanning electron microscope. Anatomy and Embryology, 1994, 189, 435-40.	1.5	66
108	Histotypic in vitro reorganization of dissociated cells from mouse fetal gonads. Differentiation, 1994, 56, 137-142.	1.0	13

#	Article	IF	CITATIONS
109	Growth factors in mouse primordial germ cell migration and proliferation. Progress in Growth Factor Research, 1994, 5, 135-143.	1.7	40
110	Interactions Between Migratory Primordial Germ Cells and Cellular Substrates in the Mouse. Novartis Foundation Symposium, 1994, 182, 140-156.	1.2	5
111	Ultrastructural study of the esophagus of seawater-and freshwater-acclimatedMugil cephalus (Perciformes, Mugilidae), euryhaline marine fish. Journal of Morphology, 1993, 217, 337-345.	0.6	2
112	Combined action of stem cell factor, leukemia inhibitory factor, and cAMP on in vitro proliferation of mouse primordial germ cells. Molecular Reproduction and Development, 1993, 35, 134-139.	1.0	85
113	Proliferation of Mouse Primordial Germ Cells in Vitro: A Key Role for cAMP. Developmental Biology, 1993, 157, 277-280.	0.9	72
114	Altered SDF-1-mediated differentiation of bone marrow-derived endothelial progenitor cells in diabetes mellitus. Journal of Cellular and Molecular Medicine, 0, 13, 3405-3414.	1.6	41