## Steven F Dobrowolski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/387865/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Base-pair neutral homozygotes can be discriminated by calibrated high-resolution melting of small amplicons. Nucleic Acids Research, 2008, 36, 3401-3408.                                                                                                  | 14.5 | 99        |
| 2  | Host conditioning and rejection monitoring in hepatocyte transplantation in humans. Journal of Hepatology, 2017, 66, 987-1000.                                                                                                                             | 3.7  | 99        |
| 3  | Identifying sequence variants in the human mitochondrial genome using high-resolution melt (HRM)<br>profiling. Human Mutation, 2009, 30, 891-898.                                                                                                          | 2.5  | 81        |
| 4  | Molecular genetics and impact of residual in vitro phenylalanine hydroxylase activity on<br>tetrahydrobiopterin responsiveness in Turkish PKU population. Molecular Genetics and Metabolism,<br>2011, 102, 116-121.                                        | 1.1  | 71        |
| 5  | Newborn Blood Spot Screening Test Using Multiplexed Real-Time PCR to Simultaneously Screen for<br>Spinal Muscular Atrophy and Severe Combined Immunodeficiency. Clinical Chemistry, 2015, 61, 412-419.                                                     | 3.2  | 68        |
| 6  | Unique aspects of sequence variant interpretation for inborn errors of metabolism (IEM): The ClinGen<br>IEM Working Group and the Phenylalanine Hydroxylase Gene. Human Mutation, 2018, 39, 1569-1580.                                                     | 2.5  | 50        |
| 7  | Mutations in the phenylalanine hydroxylase gene identified in 95 patients with phenylketonuria using novel systems of mutation scanning and specific genotyping based upon thermal melt profiles.<br>Molecular Genetics and Metabolism, 2007, 91, 218-227. | 1.1  | 44        |
| 8  | Newborn Screening for Spinal Muscular Atrophy by Calibrated Short-Amplicon Melt Profiling.<br>Clinical Chemistry, 2012, 58, 1033-1039.                                                                                                                     | 3.2  | 36        |
| 9  | Parental attitudes toward newborn screening for Duchenne/Becker muscular dystrophy and spinal muscular atrophy. Muscle and Nerve, 2014, 49, 822-828.                                                                                                       | 2.2  | 33        |
| 10 | Optimization of an Automated DNA Purification Protocol for Neonatal Screening. Archives of Pathology and Laboratory Medicine, 1999, 123, 1154-1160.                                                                                                        | 2.5  | 33        |
| 11 | A porcine model of phenylketonuria generated by CRISPR/Cas9 genome editing. JCI Insight, 2020, 5, .                                                                                                                                                        | 5.0  | 29        |
| 12 | Streamlined assessment of gene variants by high resolution melt profiling utilizing the ornithine transcarbamylase gene as a model system. Human Mutation, 2007, 28, 1133-1140.                                                                            | 2.5  | 26        |
| 13 | The phenylalanine hydroxylase c.30C>C synonymous variation (p.G10G) creates a common exonic splicing silencer. Molecular Genetics and Metabolism, 2010, 100, 316-323.                                                                                      | 1.1  | 23        |
| 14 | Impaired mitochondrial medium-chain fatty acid oxidation drives periportal macrovesicular steatosis<br>in sirtuin-5 knockout mice. Scientific Reports, 2020, 10, 18367.                                                                                    | 3.3  | 21        |
| 15 | Altered DNA methylation in PAH deficient phenylketonuria. Molecular Genetics and Metabolism, 2015, 115, 72-77.                                                                                                                                             | 1.1  | 20        |
| 16 | Physiological Perspectives on the Use of Triheptanoin as Anaplerotic Therapy for Long Chain Fatty<br>Acid Oxidation Disorders. Frontiers in Genetics, 2020, 11, 598760.                                                                                    | 2.3  | 19        |
| 17 | A limited spectrum of phenylalanine hydroxylase mutations is observed in phenylketonuria patients in<br>western Poland and implications for treatment with 6R tetrahydrobiopterin. Journal of Human<br>Genetics, 2009, 54, 335-339.                        | 2.3  | 18        |
| 18 | The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer. PLoS Genetics, 2016, 12, e1006039.                                                                                                 | 3.5  | 18        |

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A bone mineralization defect in the Pahenu2 model of classical phenylketonuria involves<br>compromised mesenchymal stem cell differentiation. Molecular Genetics and Metabolism, 2018, 125,<br>193-199.                                           | 1.1 | 18        |
| 20 | Modeling correlates of low bone mineral density in patients with phenylalanine hydroxylase deficiency. Journal of Inherited Metabolic Disease, 2016, 39, 363-372.                                                                                 | 3.6 | 14        |
| 21 | The high-density lipoprotein receptor Scarb1 is required for normal bone differentiation in vivo and in vitro. Laboratory Investigation, 2019, 99, 1850-1860.                                                                                     | 3.7 | 13        |
| 22 | Biliary-Atresia-Associated Mannosidase-1-Alpha-2 Gene Regulates Biliary and Ciliary Morphogenesis and<br>Laterality. Frontiers in Physiology, 2020, 11, 538701.                                                                                   | 2.8 | 13        |
| 23 | Clinical, biochemical, mitochondrial, and metabolomic aspects of methylmalonate semialdehyde<br>dehydrogenase deficiency: Report of a fifth case. Molecular Genetics and Metabolism, 2020, 129,<br>272-277.                                       | 1.1 | 12        |
| 24 | Phenylketonuria oxidative stress and energy dysregulation: Emerging pathophysiological elements provide interventional opportunity. Molecular Genetics and Metabolism, 2022, 136, 111-117.                                                        | 1.1 | 10        |
| 25 | Complex patterns of inheritance, including synergistic heterozygosity, in inborn errors of<br>metabolism: Implications for precision medicine driven diagnosis and treatment. Molecular Genetics<br>and Metabolism, 2019, 128, 1-9.               | 1.1 | 8         |
| 26 | Mesenchymal stem cell energy deficit and oxidative stress contribute to osteopenia in the Pahenu2 classical PKU mouse. Molecular Genetics and Metabolism, 2021, 132, 173-179.                                                                     | 1.1 | 8         |
| 27 | Phenylalanine hydroxylase genotype-phenotype associations in the United States: A single center study. Molecular Genetics and Metabolism, 2019, 128, 415-421.                                                                                     | 1.1 | 7         |
| 28 | Mitochondrial respiratory chain disorders in the Old Order Amish population. Molecular Genetics and Metabolism, 2016, 118, 296-303.                                                                                                               | 1.1 | 6         |
| 29 | Acquired deficiency of peroxisomal dicarboxylic acid catabolism is a metabolic vulnerability in hepatoblastoma. Journal of Biological Chemistry, 2021, 296, 100283.                                                                               | 3.4 | 6         |
| 30 | Comparative metabolomics in the Pahenu2 classical PKU mouse identifies cerebral energy pathway disruption and oxidative stress. Molecular Genetics and Metabolism, 2022, 136, 38-45.                                                              | 1.1 | 5         |
| 31 | Growth and mineralization of osteoblasts from mesenchymal stem cells on microporous membranes:<br>Epithelial-like growth with transmembrane resistance and pH gradient. Biochemical and Biophysical<br>Research Communications, 2021, 580, 14-19. | 2.1 | 3         |
| 32 | A New View of Bone Loss in Phenylketonuria. Organogenesis, 2021, , 1-6.                                                                                                                                                                           | 1.2 | 2         |
| 33 | An Infant with a Constellation of Biochemical Abnormalities. Clinical Chemistry, 2021, 67, 1035-1036.                                                                                                                                             | 3.2 | 1         |