
Nicolas Blanchard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3878484/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and further use of SF5-alkynes as platforms for the design of more complex SF5-containing products. Tetrahedron, 2022, 117-118, 132814.	1.0	11
2	Synthesis and Physicochemical Properties of 2-SF ₅ -(Aza)Indoles, a New Family of SF ₅ Heterocycles. ACS Organic & Inorganic Au, 2021, 1, 43-50.	1.9	25
3	Molecular Mechanisms Underpinning the Circulation and Cellular Uptake of Mycobacterium ulcerans Toxin Mycolactone. Frontiers in Pharmacology, 2021, 12, 733496.	1.6	4
4	Ligand-Controlled Regiodivergent Palladium-Catalyzed Hydrogermylation of Ynamides. Journal of the American Chemical Society, 2020, 142, 11153-11164.	6.6	52
5	DABCOâ€promoted Diaryl Thioether Formation by Metalâ€catalyzed Coupling of Sodium Sulfinates and Aryl Iodides. Advanced Synthesis and Catalysis, 2020, 362, 2326-2331.	2.1	18
6	Optimized Synthesis of 7-Azaindazole by a Diels–Alder Cascade and Associated Process Safety. Organic Process Research and Development, 2020, 24, 776-786.	1.3	6
7	Spatiotemporal analysis of mycolactone distribution in vivo reveals partial diffusion in the central nervous system. PLoS Neglected Tropical Diseases, 2020, 14, e0008878.	1.3	7
8	Recombinant Antibodies against Mycolactone. Toxins, 2019, 11, 346.	1.5	9
9	Särefluoride in der Übergangsmetallkatalyse: Balance von Stabilitäund Reaktivitä Angewandte Chemie, 2019, 131, 6886-6889.	1.6	13
10	Nusbiarylins, a new class of antimicrobial agents: Rational design of bacterial transcription inhibitors targeting the interaction between the NusB and NusE proteins. Bioorganic Chemistry, 2019, 92, 103203.	2.0	15
11	Activating Pyrimidines by Pre-distortion for the General Synthesis of 7-Aza-indazoles from 2-Hydrazonylpyrimidines via Intramolecular Diels–Alder Reactions. Journal of the American Chemical Society, 2019, 141, 15901-15909.	6.6	15
12	Ruthenium-catalyzed ring-opening reaction of a 3-aza-2-oxabicyclo[2.2.1]hept-5-ene with amines — an unexpected mode of ring-opening. Canadian Journal of Chemistry, 2019, 97, 310-316.	0.6	0
13	Design, synthesis and biological evaluation of antimicrobial diarylimine and –amine compounds targeting the interaction between the bacterial NusB and NusE proteins. European Journal of Medicinal Chemistry, 2019, 178, 214-231.	2.6	15
14	lpomoeassin F Binds Sec61α to Inhibit Protein Translocation. Journal of the American Chemical Society, 2019, 141, 8450-8461.	6.6	58
15	Acid Fluorides in Transitionâ€Metal Catalysis: A Good Balance between Stability and Reactivity. Angewandte Chemie - International Edition, 2019, 58, 6814-6817.	7.2	74
16	Aryl transition metal chemical warheads for protein bioconjugation. Chemical Science, 2018, 9, 5132-5144.	3.7	20
17	Novel applications of fluorescent brighteners in aqueous visible-light photopolymerization: high performance water-based coating and LED-assisted hydrogel synthesis. Polymer Chemistry, 2018, 9, 3952-3958.	1.9	12
18	Copper-mediated synthesis of N-vinyl ynamides from N-vinyl carbamates. Tetrahedron Letters, 2018, 59, 3349-3352.	0.7	5

#	Article	IF	CITATIONS
19	<i>In situ</i> Bragg coherent X-ray diffraction during tensile testing of an individual Au nanowire. Journal of Applied Crystallography, 2018, 51, 781-788.	1.9	11
20	Intramolecular Inverse Electron-Demand [4 + 2] Cycloadditions of Ynamides with Pyrimidines: Scope and Density Functional Theory Insights. Journal of Organic Chemistry, 2017, 82, 1726-1742.	1.7	20
21	Intramolecular inverse electron-demand [4+2] cycloadditions of ynamidyl-tethered pyrimidines: Comparative studies in trifluorotoluene and sulfolane. Comptes Rendus Chimie, 2017, 20, 643-647.	0.2	3
22	Synthetic strategies towards mycolactone A/B, an exotoxin secreted by Mycobacterium ulcerans. Organic Chemistry Frontiers, 2017, 4, 2380-2386.	2.3	4
23	Modular total syntheses of mycolactone A/B and its [² H]-isotopologue. Organic and Biomolecular Chemistry, 2017, 15, 7518-7522.	1.5	12
24	Diels–Alder and Formal Diels–Alder Cycloaddition Reactions of Ynamines and Ynamides. European Journal of Organic Chemistry, 2017, 2017, 6816-6830.	1.2	70
25	Acid-catalyzed ring-opening reactions of a cyclopropanated 3-aza-2-oxabicyclo[2.2.1]hept-5-ene with alcohols. Beilstein Journal of Organic Chemistry, 2017, 13, 2888-2894.	1.3	1
26	Total Syntheses of Mycolactone A/B and its Analogues for the Exploration of the Biology of Buruli Ulcer. Chimia, 2017, 71, 836.	0.3	10
27	A Straightforward Entry to \hat{I}^3 -Trifluoromethylated Allenamides and Their Synthetic Applications. Synlett, 2016, 27, 2575-2580.	1.0	13
28	A Journey in the Chemistry of Ynamides: From Synthesis to Applications. Chemistry Letters, 2016, 45, 574-585.	0.7	79
29	Stereodivergent Hydrosilylation, Hydrostannylation, and Hydrogermylation of α-Trifluoromethylated Alkynes and Their Synthetic Applications. Synthesis, 2016, 48, 3317-3330.	1.2	21
30	Mycolactone subverts immunity by selectively blocking the Sec61 translocon. Journal of Experimental Medicine, 2016, 213, 2885-2896.	4.2	101
31	Fluorescent Brighteners as Visible LED-Light Sensitive Photoinitiators for Free Radical Photopolymerizations. Macromolecular Rapid Communications, 2016, 37, 840-844.	2.0	19
32	Synthesis of cyclopropanated [2.2.1] heterobicycloalkenes: An improved procedure. Synthetic Communications, 2016, 46, 55-62.	1.1	20
33	Inverse Electron-Demand [4 + 2]-Cycloadditions of Ynamides: Access to Novel Pyridine Scaffolds. Organic Letters, 2016, 18, 1610-1613.	2.4	37
34	A Walk Across Africa with Captain Grant. Strategies and Tactics in Organic Synthesis, 2015, , 85-117.	0.1	1
35	Sonogashira reactions for the synthesis of polarized pentacene derivatives. Turkish Journal of Chemistry, 2015, 39, 1180-1189.	0.5	3
36	Shaping mycolactone for therapeutic use against inflammatory disorders. Science Translational Medicine, 2015, 7, 289ra85.	5.8	44

#	Article	IF	CITATIONS
37	Boron chemistry in a new light. Chemical Science, 2015, 6, 5366-5382.	3.7	131
38	Stereodivergent Hydrogermylations of α-Trifluoromethylated Alkynes and Their Applications in Cross-Coupling Reactions. Organic Letters, 2015, 17, 1794-1797.	2.4	46
39	Practical Methods for the Synthesis of Trifluoromethylated Alkynes: Oxidative Trifluoromethylation of Copper Acetylides and Alkynes. Advanced Synthesis and Catalysis, 2014, 356, 2051-2060.	2.1	50
40	Turning unreactive copper acetylides into remarkably powerful and mild alkyne transfer reagents by oxidative umpolung. Chemical Communications, 2014, 50, 10008-10018.	2.2	26
41	Chopping unfunctionalized carbon–carbon bonds: a new paradigm for the synthesis of organonitriles. Organic Chemistry Frontiers, 2014, 1, 825-833.	2.3	19
42	Synthetic Variants of Mycolactone Bind and Activate Wiskott–Aldrich Syndrome Proteins. Journal of Medicinal Chemistry, 2014, 57, 7382-7395.	2.9	26
43	On the Synthesis, Characterization and Reactivity of Nâ€Heteroaryl–Boryl Radicals, a New Radical Class Based on Fiveâ€Membered Ring Ligands. Chemistry - A European Journal, 2014, 20, 5054-5063.	1.7	17
44	Taming sulfur dioxide: a breakthrough for its wide utilization in chemistry and biology. Organic and Biomolecular Chemistry, 2013, 11, 5393.	1.5	161
45	Mechanistic and Preparative Studies of Radical Chain Homolytic Substitution Reactions of N-Heterocyclic Carbene Boranes and Disulfides. Journal of the American Chemical Society, 2013, 135, 10484-10491.	6.6	71
46	History, biology and chemistry of Mycobacterium ulcerans infections (Buruli ulcer disease). Natural Product Reports, 2013, 30, 1527.	5.2	48
47	Soft Photopolymerizations Initiated by Dye-Sensitized Formation of NHC-Boryl Radicals under Visible Light. Macromolecules, 2013, 46, 43-48.	2.2	72
48	BODIPY derivatives and boranil as new photoinitiating systems of cationic polymerization exhibiting a tunable absorption in the 400–600Ânm spectral range. Polymer, 2013, 54, 2071-2076.	1.8	48
49	Formation of N-Heterocyclic Carbene–Boryl Radicals through Electrochemical and Photochemical Cleavage of the B–S bond in N-Heterocyclic Carbene–Boryl Sulfides. Journal of the American Chemical Society, 2013, 135, 16938-16947.	6.6	57
50	Photoredox Catalysis for Polymerization Reactions. Chimia, 2012, 66, 439.	0.3	26
51	lridium Photocatalysts in Free Radical Photopolymerization under Visible Lights. ACS Macro Letters, 2012, 1, 286-290.	2.3	136
52	Organic Photocatalyst for Polymerization Reactions: 9,10-Bis[(triisopropylsilyl)ethynyl]anthracene. ACS Macro Letters, 2012, 1, 198-203.	2.3	93
53	Tunable Organophotocatalysts for Polymerization Reactions Under Visible Lights Macromolecules, 2012, 45, 1746-1752.	2.2	128
54	Photopolymerization of Cationic Monomers and Acrylate/Divinylether Blends under Visible Light Using Pyrromethene Dyes. Macromolecules, 2012, 45, 6864-6868.	2.2	75

#	Article	IF	CITATIONS
55	Household LED irradiation under air: cationic polymerization using iridium or ruthenium complex photocatalysts. Polymer Bulletin, 2012, 68, 341-347.	1.7	42
56	An Approach Toward Homocalystegines and Silyl-homocalystegines. Acid-Mediated Migrations of Acetates in Seven-Membered Ring Systems. Journal of Organic Chemistry, 2011, 76, 791-799.	1.7	13
57	Synthesis of spiroketals under neutral conditions via a type III ring-rearrangement metathesis strategy. Chemical Communications, 2011, 47, 10284.	2.2	20
58	Controlled synthesis of branched poly(vinyl acetate)s by xanthate-mediated RAFT self-condensing vinyl (co)polymerization. Polymer Chemistry, 2011, 2, 2231.	1.9	37
59	New thioxanthone and xanthone photoinitiators based on silyl radical chemistry. Polymer Chemistry, 2011, 2, 1077-1084.	1.9	83
60	Ruthenium-catalyzed [2+2] cycloaddition reactions of a 2-oxa-3-azabicyclo[2.2.1]hept-5-ene with unsymmetrical alkynes. Canadian Journal of Chemistry, 2011, 89, 1494-1505.	0.6	10
61	Efficient dual radical/cationic photoinitiator under visible light: a new concept. Polymer Chemistry, 2011, 2, 1986.	1.9	174
62	Tandem cationic and sol–gel photopolymerizations of a vinyl ether alkoxysilane. Polymer Engineering and Science, 2011, 51, 1466-1475.	1.5	9
63	Silyloxyamines as sources of silyl radicals: ESR spinâ€ŧrapping, laser flash photolysis investigation, and photopolymerization ability. Journal of Physical Organic Chemistry, 2011, 24, 342-350.	0.9	9
64	A Novel Photopolymerization Initiating System Based on an Iridium Complex Photocatalyst. Macromolecular Rapid Communications, 2011, 32, 917-920.	2.0	103
65	Decatungstate (W ₁₀ 0)/Silane: A New and Promising Radical Source Under Soft Light Irradiation. Macromolecular Rapid Communications, 2011, 32, 838-843.	2.0	29
66	Subtle Ligand Effects in Oxidative Photocatalysis with Iridium Complexes: Application to Photopolymerization. Chemistry - A European Journal, 2011, 17, 15027-15031.	1.7	162
67	A Diverted Total Synthesis of Mycolactone Analogues: An Insight into Buruli Ulcer Toxins. Chemistry - A European Journal, 2011, 17, 14413-14419.	1.7	58
68	Reaction between aminoalkyl radicals and akyl halides: Dehalogenation by electron transfer?. Chemical Physics Letters, 2011, 511, 156-158.	1.2	12
69	New Boryl Radicals Derived from Nâ€Heteroaryl Boranes: Generation and Reactivity. Chemistry - A European Journal, 2010, 16, 12920-12927.	1.7	57
70	Bis(germyl)ketones: Toward a New Class of Type I Photoinitiating Systems Sensitive Above 500 nm?. Macromolecular Rapid Communications, 2010, 31, 473-478.	2.0	35
71	Near UV–visible light induced cationic photopolymerization reactions: A three component photoinitiating system based on acridinedione/silane/iodonium salt. European Polymer Journal, 2010, 46, 2138-2144.	2.6	46
72	α-Acyloxynitroso dienophiles in [4+2] hetero Diels–Alder cycloadditions: mechanistic insights. Tetrahedron, 2010, 66, 2969-2980.	1.0	15

5

#	Article	IF	CITATIONS
73	Green Bulb Light Source Induced Epoxy Cationic Polymerization under Air Using Tris(2,2′-bipyridine)ruthenium(II) and Silyl Radicals. Macromolecules, 2010, 43, 10191-10195.	2.2	240
74	Effect of Lewis base coordination on boryl radical reactivity: investigation using laser flash photolysis and kinetic ESR. Journal of Physical Organic Chemistry, 2009, 22, 986-993.	0.9	49
75	Rhodium-Catalyzed Ring-Opening Reactions of a 3-Aza-2-oxabicyclo[2.2.1]hept-5-ene with Arylboronic Acids. Journal of Organic Chemistry, 2009, 74, 7261-7266.	1.7	27
76	Ruthenium-Catalyzed Nucleophilic Ring-Opening Reactions of a 3-Aza-2-oxabicyclo[2.2.1]hept-5-ene with Alcohols. Organic Letters, 2009, 11, 2077-2080.	2.4	38
77	Silyl Radical Chemistry and Conventional Photoinitiators: A Route for the Design of Efficient Systems. Macromolecules, 2009, 42, 6031-6037.	2.2	37
78	Tris(trimethylsilyl)silyl versus tris(trimethylsilyl)germyl: Radical reactivity and oxidation ability. Journal of Organometallic Chemistry, 2008, 693, 3643-3649.	0.8	47
79	Copper-Mediated Coupling Reactions and Their Applications in Natural Products and Designed Biomolecules Synthesis. Chemical Reviews, 2008, 108, 3054-3131.	23.0	1,916
80	Efficient cleavage of the N–O bond of 3,6-dihydro-1,2-oxazines mediated by some α-hetero substituted carbonyl compounds in mild conditions. Organic and Biomolecular Chemistry, 2008, 6, 1063.	1.5	20
81	New Photoinitiators Based on the Silyl Radical Chemistry: Polymerization Ability, ESR Spin Trapping, and Laser Flash Photolysis Investigation. Macromolecules, 2008, 41, 4180-4186.	2.2	103
82	New Photoiniferters: Respective Role of the Initiating and Persistent Radicals. Macromolecules, 2008, 41, 2347-2352.	2.2	52
83	Domino Metathesis of 3,6-Dihydro-1,2-oxazine:  Access to Isoxazolo[2,3-a]pyridin-7-ones. Organic Letters, 2007, 9, 1485-1488.	2.4	55
84	2,2-Dimethyl-5-nitroso-1,3-dioxan-5-yl benzoate, 2,2-dimethyl-5-nitroso-1,3-dioxan-5-yl 4-chlorobenzoate and 5-nitroso-1,3-dioxan-5-yl 4-chlorobenzoate. Acta Crystallographica Section C: Crystal Structure Communications, 2007, 63, o365-o368.	0.4	3
85	Daucus carota L. mediated bioreduction of prochiral ketones. Organic and Biomolecular Chemistry, 2006, 4, 2348.	1.5	57
86	Metathesis of heteroatom-substituted olefins and alkynes: Current scope and limitations. Journal of Organometallic Chemistry, 2006, 691, 5078-5108.	0.8	52
87	Total synthesis of zincophorin. Pure and Applied Chemistry, 2005, 77, 1131-1137.	0.9	10
88	Synthesis of polypropionate subunits from cyclopropanes. Tetrahedron, 2005, 61, 7632-7653.	1.0	13
89	Intermolecular nitroso Diels–Alder cycloaddition of α-acetoxynitroso derivatives in aqueous medium. Organic and Biomolecular Chemistry, 2005, 3, 4395.	1.5	33
90	Total Synthesis of Zincophorin and Its Methyl Ester. ChemInform, 2005, 36, no.	0.1	0

#	Article	IF	CITATIONS
91	Synthesis of Polysubstituted Pyrroles from Nitroso-Diels-Alder Cycloadducts. Synthesis, 2005, 2005, 3346-3354.	1.2	3
92	Stereoselective Synthesis of Polypropionate Units and Heterocyclic Compounds by Cyclopropylcarbinol Ring-Opening with Mercury(II) Salts. ChemInform, 2004, 35, no.	0.1	0
93	Lewis Acid Promoted Hetero Diels—Alder Cycloaddition of α-Acetoxynitroso Dienophiles ChemInform, 2004, 35, no.	0.1	0
94	Total Synthesis of Formamicin. Journal of the American Chemical Society, 2004, 126, 9307-9317.	6.6	49
95	Lewis Acid-Promoted Hetero Dielsâ^'Alder Cycloaddition of α-Acetoxynitroso Dienophiles. Organic Letters, 2004, 6, 2449-2451.	2.4	56
96	Total Synthesis of Zincophorin and Its Methyl Ester. Journal of Organic Chemistry, 2004, 69, 4626-4647.	1.7	58
97	Chapter 10 Total synthesis of zincophorin and its methyl ester. Strategies and Tactics in Organic Synthesis, 2004, , 303-352.	0.1	1
98	Stereoselective Synthesis of Polypropionate Units and Heterocyclic Compounds by Cyclopropylcarbinol Ring-Opening with Mercury(II) Salts. Accounts of Chemical Research, 2003, 36, 766-772.	7.6	47
99	2-Deoxy-2-iodo-β-glucopyranosyl Fluorides:  Mild and Highly Stereoselective Glycosyl Donors for the Synthesis of 2-Deoxy-β-glycosides from β-Hydroxy Ketones. Organic Letters, 2003, 5, 81-84.	2.4	35
100	Total Synthesis of Zincophorin Methyl Ester. Organic Letters, 2003, 5, 4037-4040.	2.4	36
101	Total Synthesis of the Formamicin Aglycon, Formamicinone. Organic Letters, 2003, 5, 377-379.	2.4	29
102	A Synthetic Approach towards the C1–C9 Subunit of Zincophorin. Angewandte Chemie - International Edition, 2002, 41, 2144.	7.2	26
103	Stereoselective oxymercuration of cyclopropylcarbinols with anchimeric assistance by aromatic groups. Tetrahedron Letters, 2002, 43, 1801-1805.	0.7	9
104	Synthesis of Stereotriads by Oxymercuration of Substituted Cyclopropylcarbinols. Organic Letters, 2001, 3, 2567-2569.	2.4	21
105	Synthesis of Isopropenylcyclopropanes â ^{~,} Revision of the Relative Configuration of Cyclopropyl Ketones Obtained by 1,3-Elimination of γ-Epoxy Ketones. European Journal of Organic Chemistry, 2001, 2001, 339-348.	1.2	17
106	Diastereoselectivity in the dihydroxylation of isopropenyl substituted three-membered rings. Tetrahedron Letters, 1999, 40, 8361-8364.	0.7	15
107	Diastereoselective Hydroboration of Isopropenylcyclopropanes. Journal of Organic Chemistry, 1999, 64, 2608-2609.	1.7	21
108	Directing Effect of a Neighboring Aromatic Group in the Cyclopropanation of Allylic Alcohols. Journal of Organic Chemistry, 1998, 63, 5728-5729.	1.7	12